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Abstract. In this article we study the parameterized complexity of the Arithmetic Circuit Identity
Testing Problem parameterized by the syntactic degree of the circuit. We show that ACIT for depth
three ΣΠΣ arithmetic circuits parameterized by the fan-in of the middle Π gates is fixed parameter
tractable. The algorithm is obtained by an application of the hitting set generator defined by Shpilka
and Volkovich [Approx-Random 2009] and the identity testing algorithm for non-commutative formulas
by Raz and Shpilka [CC, 2005]. Further, we give a polynomial of degree k that can be computed by a
degree k, polynomial size, depth four ΣΠΣΠ circuit that requires nΩ(k) size for any depth three circuit
computing it.
Finally, we exhibit the limitations of the Shpilka-Volkovich generator in obtaining fixed parameter
tractable algorithms for ACIT. In particular, we show that the Shpilka-Volkovich generator preserves
the rank of the coefficient matrix of polynomials.

1 Introduction

Parameterized Complexity is the discipline where an additional parameter along with the
input is considered for measuring the complexity of computational problems. This leads to a
more fine-grained complexity classification of computational problems and a relaxed notion
of tractability. Downey and Fellows [DF13] were the first to study complexity of problems
with a parameter, and develop the area of parameterized complexity theory. Over the last two
decades, parameterized complexity has played a pivotal role in algorithmic research [DF13].

Fixed Parameter Tractability (FPT) is the notion of tractability in Parameterized Com-
plexity Theory. A decision problem with parameter k that is decidable in deterministic time
f(k)poly(n), where f is an arbitrary, computable function, is said to be fixed parameter
tractable (FPT for short). The whole area of parameterized complexity theory is centered
around this definition of tractability. The parameterized intractable problems are based on
the hierarchy of classes known as the W-hierarchy. The smallest member of W-hierarchy,
W[1] consists of problems that are FPT equivalent to the clique problem with the size of the
clique as the parameter.
Motivation: Parameterized complexity of problems based on graphs and other combina-
torial structures played pivotal role in the development of Parameterized Algorithms and
Complexity Theory. Many of the parameterized algorithms involve evaluation of polyno-
mials of degree bounded by the parameter. For example, in [BHT12], Björklund et. al.,
defined and used a degree k polynomial which is identically zero if and only if the given
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graph has no cycle of length k or smaller. Polynomials of degree bounded by the parameter
have been extensively used to develop efficient randomized parameterized algorithms, see
e,g., [Bjö10,AFS12,FLR+12]. Further, obtaining a deterministic f(k)nO(1) time algorithm
checking if an n variate polynomial of degree at most k is zero or not for some function
f of k would lead to fast deterministic FPT algorithms for a wide variety of problems.
The construction of representative sets in [FLPS16] can also be viewed a parameterized de-
randomization of the polynomial identity testing problem for a special class of polynomials
where the monomials have a matroidal structure.

Wide application of polynomials whose degree is bounded by the paramater in Parame-
terized Complexity Theory merits a study of such polynomials in algebraic models of com-
putation. We initiate the study of polynomials with the degree as the parameter.

Our Model: Motivated by the applications of polynomials parameterized by degree, we study
the parameterized complexity of polynomials with degree as a parameter. More specifically,
given a parameter k = k(n), classify the the families of polynomials of degree k based on the
minimum size of the arithmetic circuit computing it. Here, the notion of efficiency is based
on the fixed parameter tractability. A natural model of computation for polynomials with
degree bounded by k would be arithmetic circuits where every gate computes a polynomial
of degree at most k. However, such a circuit of size f(k)nO(1) for some function f of k can
compute polynomials with coefficients as large as 22n where n is the number of variables, and
hence evaluation of such polynomials unlikely to be Fixed Parameter Tractable. Thus we need
models where the coefficients computed will be representable in f(k)nO(1) many bits. Towards
this, we consider the arithmetic circuits where the syntactic degree (see Section 2 for a
definition) is bounded by the degree of the polynomial being computed as the computational
model.

Further, we study the parameterized version of Arithmetic Circuit Identity Testing (ACIT)
problem: testing if the given arithmetic circuit computes the zero polynomial or not. ACIT
is one of the fundamental computational questions on polynomials. Schwartz [Sch80] and
Zippel [Zip79] independently showed that there is a randomized polynomial time algorithm
for ACIT. Their algorithm worked for a more general setting, where the polynomials are
given in the black-box form. However, obtaining deterministic polynomial time algorithm
for ACIT has been one of the prominent open questions for decades, playing a pivotal role in
Algebraic Complexity Theory. Motivated by the application of ACIT in several parameter-
ized algorithms [BHT12,Bjö10,AFS12,FLR+12] with degree as the parameter, we study the
complexity of ACIT with degree as the parameter.

Our Results: We define the notion of fixed parameter tractability (FPT) of a family of
polynomials parameterized by the degree. We study the parameterized complexity of the
arithmetic circuit identity testing problem and show that non-black box identity testing of
depth three circuits of syntactic degree at most k is fixed parameter tractable (Theorem 5).
This result is obtained by the application of a hitting set generator defined by Shpilka and
Volkovich [SV09]. We also show that the techniques used in Theorem 5 cannot be used
to obtain efficient parameterized identity tests for depth four circuits by proving that the
generator given by [SV09] preserves rank of certain matrix associated with polynomials
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(Theorem 6). Finally, we obtain a parameterized separation between depth three and four
circuits (Theorem 3). Further, we show that there is a polynomial computed by depth four
ΣΠΣ∧ circuits of polynomial size, that cannot be computed by a degree k h(k)poly(n) sized
Σ ∧o(k) Σ ∧Σ circuit (Theorem 4).

Related work: Though algebraic techniques have been well utilized in obtaining efficient
parameterized algorithms, the focus on parameterized complexity of algebraic problems is
very limited. Chen et. al. [CFLS13] studied the parameterized complexity of detecting and
testing monomials in polynomials given as arithmetic circuits. Arvind et. al [AKKT16] ob-
tained parameterized algorithms for solving systems of linear equations parameterized by
the hamming weight. Engels [Eng16] developed Parameterized Algebraic Complexity theory
in analogy to Valiant’s notion of Algebraic Complexity. Apart from these results, there have
not been much attention on algebraic problems in the parameterized world.

Müller [Mül08] studied several parameterized variants of the ACIT problem and obtained
randomized parameterized algorithms for those variants that use O(k log n) random bits
where k is the parameter. Further, Chauhan and Rao [CR15] studied ACIT with the syntactic
degree of the circuit as a parameter, and showed that the problem has a randomized algorithm
that uses only O(k log n) random bits, where k is the syntactic degree. Finally, it can be seen
from the observations in [CR15] that ACIT with syntactic degree as a parameter is equivalent
to the same problem with the number of variables as a parameter (Section 2).

2 Preliminaries

In this section we will introduce necessary notions on arithmetic circuits and parameterized
complexity. For more details the reader is referred to [SY10] and [DF13].

An arithmetic circuit C over a field F and the set of variables X = {x1, . . . , xn} is a
labelled directed acyclic graph. The nodes in C are called gates. Gates of zero in-degree are
called input gates and are labelled by either variables in X, or constants in F. Other gates in
C are labelled by either × or +. Gates with zero out-degree are called output gates. In our
applications, an arithmetic circuit will have a unique output gate. Every gate in C naturally
represents a polynomial in F[x1, . . . , xn]. The polynomial computed by C is the polynomial
represented at the output gate.

Depth of an arithmetic circuit is the length of the longest path from an input gate to the
output gate. In this paper, our focus is on constant depth arithmetic circuits. It should be
noted that, constant depth circuits are interesting only when the fan-in of gates are allowed
to be unbounded. ΣΠΣ denotes the class of depth three circuits of the form

∑r
i=1

∏t
j=1 `i,j

for some r, t ≥ 0 and `i,js are linear functions of the input variables. Similarly, depth four
ΣΠΣΠ circuits are defined. The fan-in restriction on the gates at a specific layer are denoted
by superscripts, e.g., ΣΠkΣ denotes the sub class of ΣΠΣ circuits where the middle layer
of product gates have fan-in bounded by k.

Saxena [Sax08] introduced the notion of dual representation of polynomials. Let f ∈
F[x1, . . . , xn]. Then f is said to have a dual representation of size t, if there are univariate
polynomials gij(xj) such that f =

∑t
i=1 gi1(x1) · · · gin(xn).
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The syntactic degree1 denoted by syntdeg for every gate v of an arithmetic circuit is
defined as follows:

syntdeg(v) =


1 if v is an input gate

max{syntdeg(v1), syntdeg(v2)} if v = v1 + v2

syntdeg(v1) + syntdeg(v2) if v = v1 × v2

We need the notion of hitting sets for arithmetic circuits [SY10]. Let Cn be a class of
polynomials in n variables. A set Hn ⊆ Fn is called a hitting set the class Cn with n inputs,
such that for all polynomials f ∈ Cn, f 6≡ 0, ∃a ∈ Hn, f(a) 6= 0.

We also require the notion of hitting set generators. Consider a polynomial mapping
G = (G1, . . . , Gn) : Ft → Fn where G1, . . . , Gn are t variate polynomials. G is a generator
for the circuit class Cn if for every polynomial f ∈ Cn, f 6≡ 0, it holds that f(G) 6≡ 0.

It is known that that the image of a generator for polynomials in Cn contains a hitting-
set for all non-zero polynomials in Cn. In this paper we will require a hitting set generator
defined by Shpilka and Volkovich [SV09].

Definition 1 (S-V Generator [SV09]). Let a1, a2 . . . an be distinct elements in the given
field F. Let Gi

k ∈ F[y1, y2 . . . yk, z1, z2 . . . zk] be the polynomial defined as follows:

Gi
k(y1, y2 . . . yk, z1, z2 . . . zk) =

k∑
j=1

Li(yj)zj, where Li(x) =

∏
j 6=i(x− aj)∏
j 6=i(ai − aj)

.

The generator Gk is defined as Gk
∆
= (G1

k, . . . G
n
k).

For a polynomial f , Gk(f) is the image of f under Gk, i.e, Gk(f) = f(G1
k, . . . , G

n
k). In [SV09],

Shpilka and Volkovich showed that Gk is a hitting set generator for sum of k read-once
polynomials. Further, in [CR15] Chauhan and Rao showed that the generator Gk is also a
hitting set generator for degree k polynomials. We state the result without proof.

Lemma 1. [CR15] Let f ∈ F[X] with deg(f) ≤ k, then f ≡ 0 ⇐⇒ Gk(f) ≡ 0, where Gk

is as in Definition 1.

They show that the identity of the polynomial p is preserved over a subset S, |S| = k+ 1
of inputs of Hamming weight k, k being the syntactic degree of the polynomial. Using Lemma
1, we can reduce identity testing of an n-variate degree-k polynomial to the identity testing
of a 2k-variate degree-nk polynomial. It is enough to see that the polynomial Gk(p) preserves
the identity of p over all possible choices of S.

Parameterized Complexity A parameterized problem is a set P ⊆ Σ∗ × N , where Σ is
a finite alphabet. If (x, k) ∈ Σ∗ × N is an instance of a parameterized problem, we refer to
x as the input and k as the parameter.

1 Syntactic degree is also known as the formal degree [KSS14] and is a standard parameter for arithmetic circuits
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Definition 2 (Fixed Parameter Tractability). A parameterized problem P ⊆ Σ∗×N is
fixed-parameter tractable if there is a computable function f : N→ N, a constant c ∈ N and
an algorithm that, given a pair (x, k) ∈ Σ∗×N, decides if (x, k) ∈ P in at most f(k)poly(n)
steps, where n is the length of input.

Definition 3 (FPT). FPT is the class of parameterized problems that are fixed parameter-
ized tractable.

ACIT is the problem of testing whether a given arithmetic circuit C computes a poly-
nomial p that is identically zero. There have been several parameterized variants of ACIT
studied in the literature [Mül08]. Following [CR15] we consider the syntactic degree of the
arithmetic circuit as a parameter.
Problem: para-ACIT
Input: A polynomial p given as an arithmetic circuit C of syntactic degree k.
Parameter: k
Output: YES if p ≡ 0.

Chauhan and Rao [CR15] show that para−ACIT ∈ W[P]− RFPT, a parameterized class
analogous to RP. In this paper we consider the problem when restricted to depth three
circuits.

Coefficient Matrix of a polynomial We consider the notion of partial derivative matrix
of a polynomial defined by Nisan [Nis91] and later used in [NW96]. Raz [Raz09] used a
variant of partial derivative matrix, which was later generalized by Kumar et al [KMS13].
In this paper we consider yet another variant of partial derivative matrices, which we call as
the coefficient matrix.

Definition 4. Let f ∈ F[x1, . . . , xn] be a polynomial of degree d, ϕ : X → Y ∪ Z be a
partition of the input variables of f . Then the coefficient matrix Mfϕ has its rows indexed
by monomials µ of degree at most d in variables in Y , and columns indexed by monomials
ν of degree at most d in variables in Z. For monomials µ and ν respectively in variables Y
and Z, the entry Mfϕ(µ, ν) is the coefficient of the monomial µν in f .

Remark 1. It should be noted that the definition above is different from the notion of polyno-
mial coefficient matrices in [KMS13], where the entries of the matrix are polynomials rather
than field elements. Whereas, our definition is nothing but that in [Nis91] except that we
use a partition of variables.

The coefficient matrix of a matrix is well studied in the literature in various forms, the
specific form used in the above definition has not been mentioned explicitly in the literature.
The following fundamental properties of the rank of the coefficient matrix follow directly
from [Raz09].

Lemma 2 (Sub-additivity). If f, g, h ∈ F[X] such that f = g+ h, then ∀ϕ : X → Y ∪Z,
rank(Mfϕ) ≤ rank(Mgϕ) + rank(Mhϕ).
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Proof. The above claim holds by matrix addition and subsequent Gaussian elimination. The
upper bound is tight when g ∈ F[A], h ∈ F[B] such that A,B ⊆ X,A ∩B = φ, as otherwise
rows r1 in Mgϕ , and r2 in Mhϕ having same entries corresponding to the monomials in
variables in A ∩B, and 0 entries elsewhere, cancel out to give a lower rank.

Lemma 3 (Sub-multiplicativity). If f, g, h ∈ F[X] such that f = g · h, then ∀ϕ : X →
Y ∪ Z, rank(Mfϕ) ≤ rank(Mgϕ)× rank(Mhϕ).

Proof. Let g and h be variable disjoint, i.e var(g)∩ var(h) = φ. Then, as ϕ : X → Y ∪Z, we
can define ϕ|g : Xg → Y1 ∪ Z1, and ϕ|h : Xh → Y2 ∪ Z2, where Xg = var(g), Xh = var(h),
Y = Y1 ∪ Y2, Z = Z1 ∪ Z2.

Now, rows in Mfϕ are indexed by monomials in variables in Y , and columns are indexed
by monomials in variables in Z. So each row index of Mfϕ can be written as a product of
∃m11,m12, monomials in variables in Y1 and Y2 respectively. Similarly, each column index
of Mfϕ can be written as a product of ∃m21,m22, monomials in variables in Z1 and Z2

respectively.
Then, ∀m1,m2 Mfϕ(m1,m2) = ab, where Mgϕ(m11,m21) = a, Mhϕ(m12,m22) = b. Hence,

rank(Mfϕ) = rank(Mgϕ)× rank(Mhϕ).
In case var(g) ∩ var(h) 6= φ, the rows indexed by mg,p1mh,q1 and mg,p2mh,q2 are added up

for all distinct row, column pairs (pi, qi) if mg,p1mh,q1 = mg,p2mh,q2 . Hence, the rank of Mfϕ

can be lower than rank(Mgϕ)× rank(Mhϕ).

The following is a simple observation regarding polynomial identities.

Lemma 4. For a polynomial h ∈ F[X], and all partitions ϕ : X → Y ∪ Z, rank(Mhϕ) =
0 ⇐⇒ h ≡ 0.

Proof. For the forward direction, we can see that Mhϕ has no non-zero entries. If h 6≡ 0, then
there must be at least one monomial in h with a non-zero coefficient. But, then, rank(Mhϕ) ≥
1. Hence, h ≡ 0.

Similarly, if h ≡ 0, all the monomials in h have coefficient 0, hence all entries of Mhϕ

should be 0. Therefore, rank(Mhϕ) = 0.

Recall that an arithmetic circuit is a formula if the out-degree of every gate is either
one or zero. Finally, we need the following result on testing identity of non-commutative
formulas. Let F{x1, x2 . . . , xn} be the non-commutative polynomial ring over the field F.
The following theorem was proved by Raz and Shpilka [RS05].

Theorem 1. [RS05] Let C ∈ F{X} be a non-commutative arithmetic formula, then there
is a white-box identity testing algorithm for C having time complexity linear in size(C).

3 Arithmetic Computation with degree as a parameter

In this section, we consider arithmetic circuits for polynomials parameterized by degree.
We define the notions of fixed parameter tractability for polynomials with degree as the
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parameter and then consider the feasibility of parameterized depth reduction. Finally we
prove lower bounds against depth three ΣΠkΣ circuits and depth five Σ ∧o(k) Σ ∧o(k) Σ
circuits. Our results imply that a parameterized version of the depth reduction given by
Agrawal and Vinay [AV08] is not possible with full generality.

3.1 Fixed Parameter Tractability in Arithmetic Computation

In this section we define the notion of parameterized tractability of polynomials over Z
parameterized by degree.

Definition 5. Let k = k(n). A family (pn)n≥0 of polynomials over Z is said to be degree k
parameterized if

– There is a c > 0 such that pn is an nc variate polynomial for every n ≥ 0;
– Degree of pn is bounded by k = k(n) for every n ≥ 0; and
– The absolute value of the coefficients of pn is bounded by 2g(k)n

c
, for some function g that

depends only on k.

Since any arithmetic circuit can be homogenized efficiently, we have:

Proposition 1. [Bür13] For any parameterized polynomial family (p, k) if there is a family
of arithmetic circuits C = (Cn)n≥0 of size f(k)nc computing p, where f(k) is a function of
k and c is a constant, then there is a family of arithmetic circuits C ′ = (C ′n) of size f ′(k)nc

′

for p such that every gate in C ′n computes a polynomial of degree at most k.

It can be seen that a circuit Cn of size f(k)nO(1) where every gate computes a polynomial
of degree at most k can compute polynomials where the absolute value of the coefficient can

be as large as 22n
O(1)

even when the constants allowed in the circuit are from {−1, 0, 1}. This
makes the evaluation of such polynomial in FPT time infeasible. A natural restriction would
be to bound the syntactic degree of the circuit. An arithmetic circuit Cn is said to be of
syntactic degree d if every gate in Cn has syntactic degree bounded by d.

A degree parameterized polynomial family (p = (pn)n≥0, k) with k = k(n) as the param-
eter is said to be fixed parameter tractable (FPT) if for every n ≥ 0, there is an arithmetic
circuit Cn of syntactic degree at most k and of size f(k)nc computing pn where f is a function
of k and c is a constant.

3.2 Parameterized Depth Reduction

Depth reduction is one of the most fundamental structural aspects in algebraic complexity
theory: Given a polynomial family p = (pn)n≥0 and a size bound s = s(n), what is the
minimum depth of an arithmetic circuit of size s computing p? The parameterized depth
reduction problem can be stated as:
Given a parameterized polynomial family (p, k) in FPT what is the minimum depth of a size
f(k)nc circuit computing p where f(k) is an arbitrary function of k and c is some constant?

By applying the well known depth reduction technique in [VSBR83], we have:
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Proposition 2. [VSBR83] Any parameterized polynomial family (p, k) in FPT can be com-
puted by circuits of depth f(k) log n and size f ′(k)nO(1), for some functions f and f ′ that
depend only on the parameter.

In a surprising result, Agrawal and Vinay [AV08] showed that any homogeneous poly-
nomial p computed by polynomial size arithmetic circuits can be computed by depth four
ΣΠ

√
nΣΠ

√
n homogeneous circuits of size 2o(n). Further, Tavenas [Tav15] improved this

bound to 2
√
n logn. Over infinite fields, there is a depth three ΣΠΣ circuit of size 2

√
n logn for

p [GKKS13].
A parameterized counterpart of the depth reduction in [AV08] would be to transform a

circuit Cn of size f(k)nO(1) and syntactic degree k to a depth four ΣΠΣΠ circuit of syntactic
degree k and size f ′(k)nO(1) where f and f ′ are functions of k alone. Note that a ΣΠΣΠ
circuit C of syntactic degree k will have Π fan-in bounded by k at both of the Π layers.
So we can assume it to be of the form ΣΠkΣΠk. Further, if C is homogeneous with the
bottom Π layer having syntactic degree t then C can be assumed to be a homogeneous
ΣΠk/tΣΠ t circuit. We first observe that we can replace Π gates with ∧ (powering) gates
in any depth four circuit with syntactic degree bounded by the parameter k. The proof is a
direct application of Fischer’s identity [Fis94] twice and is omitted.

Lemma 5. Let C be a ΣΠk/tΣΠ t circuit of size s computing a polynomial p over Z. Then
there is a Σ ∧k/t Σ ∧t Σ circuit C ′ of size max{2k/t, 2t} · s computing p. Moreover, if C is
homogeneous, so is C ′.

Thus a parameterized version of depth reduction in [AV08] would imply that every pa-

rameterized polynomial family (p, k) in FPT can be computed by a homogeneous Σ ∧O(
√
k)

Σ ∧O(
√
k) Σ circuit of size f(k)nO(1) for some function f of k. However, in the next section,

we show that if the degree of top layer of powering gates is bounded by o(k), then this is not
possible.

3.3 Parameterized Lower Bounds against constant depth circuits

In this section we prove parameterized lower bounds against depth three ΣΠkΣ and re-
stricted depth five Σ ∧Σ ∧Σ circuits with powering and sum gates.

Depth Three Circuits In this section, we show that there are polynomial families parame-
terized by degree, computable by depth four circuits such that any depth three ΣΠkΣ circuit
computing it has size nΩ(k) we observe that there is a polynomial computed by parameterized
depth four circuits that has large rank .

Lemma 6. Let X = {y1, . . . , ym, z1, . . . , zm}. Let f =
∏k

i=1Qi where

Qi = (1 + y (i−1)m
k

+1
z (i−1)m

k
+1

+ y (i−1)m
k

+2
z (i−1)m

k
+2

+ . . .+ y im
k
z im
k

)

are multivariate quadratic polynomials in F[X], then ∃ϕ : X → Y ∪Z such that rank(Mfϕ) =
Ω((m+k

k
)k).
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Proof. Let | Y |=| Z |= m and Y = {y1, y2, . . . , ym}, Z = {z1, z2, . . . , zm}. Let us consider
the natural partition ϕ : X → Y ∪ Z. By expanding fϕ we get: fϕ = (1 + y1z1 + · · · +
ym
k
zm
k

) . . . (1 + y (k−1)m
k

+1
z (k−1)m

k
+1

+ . . .+ ymzm).

Hence, fϕ is product of k quadratic polynomials such that each monomial is of the form
pq or 1 where p is product of yi’s and q is product of zi’s. So, the coefficients of all monomials
correspond to the diagonal elements of the coefficient matrix Mfϕ assuming natural ordering
of indices as 1 � z1 � z2 � . . . � z1z2 � . . . z1z2z3 . . . and similarly for row indices. Thus,

rank(Mfϕ) =
(
m
k

+ 1
)k

=
(
m+k
k

)k
, and partition function ϕ is the required partition. This

completes the proof.

Now, we need the folklore fact that for any partition of its variables, a polynomial with a
‘small’ dual representation will have rank of the coefficient matrix small.

Lemma 7. (folklore) Suppose f =
∑t

i=1 gi,1(x1)gi,2(x2) . . . gi,n(xn). Then, for all partitions
ϕ : X → Y ∪ Z, rank(Mfϕ) ≤ t where gi,1, gi,2, . . . , gi,n are univariate polynomials in
x1, x2, . . . , xn respectively.

Proof. Since gi,j’s are univariate polynomials, for all partitions ϕ, the coefficient matrix Mgϕi,j

has rank 1. Then, for all partitions ϕ : X → Y ∪ Z, it follows from the sub-additivity and
sub-multiplicativity of the measure that rank(Mgϕi,1...g

ϕ
i,n

) = 1. Thus, ∀ϕ, rank(Mfϕ) ≤ t .

As an immediate consequence of Lemmas 7 and 6 we have:

Theorem 2. There exists a polynomial f ∈ F[x1, . . . , xn], f =
∑s

i=1

∏di
j=1Qi,j, where s > 0,

Qi,j is a multivariate quadratic polynomial with maxi{di} ≤ k, such that

f = Σt
i=1gi,1(x1)gi,2(x2) . . . gi,n(xn) =⇒ t = nΩ(k),

where gi,1gi,2 . . . gi,n are univariate polynomials of syntactic degree k.

Further, we observe that depth three ΣΠΣ circuits of syntactic degree k, compute polyno-
mials of ‘small’ degree under every partition:

Lemma 8. Let f ∈ F[x1, . . . , xn], f ∈ ΣΠkΣ and Mfϕ is the coefficient matrix correspond-
ing to the partition of variables of f , ϕ : X → Y ∪ Z. Then rank(Mfϕ) ≤ s · 2O(k), where s
is the smallest size of a ΣΠkΣ circuit for f .

Proof. Let f ∈ F[x1, . . . , xn], f ∈ ΣΠkΣ. Hence f =
∑∏k∑n

i aixi, where ai ∈ F. Then,
∀ϕ, rank(Mfϕ) ≤ 2O(k)s since rank(M`ϕ) ≤ 2, for all linear functions ` =

∑n
i=1 aixi; and rank

of the coefficient matrix is sub-multiplicative and sub-additive.

Combining Lemma 6 and Lemma 8 we get the following:

Theorem 3. Let f ∈ F[x1, . . . , xn], f ∈ ΣΠk/2ΣΠ2 such that f has degree k, then any
depth-3 ΣΠkΣ circuit computing f has size nΩ(k).
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Proof. Let f be the polynomial defined in Lemma 6, f =
∏k

i=1Qi. Then, there is some
partition ϕ, for which f has rank(Mfϕ) = Ω(g(k)nk), for some function g (putting m = n

2
).

Now, for all polynomials p computed by depth-3 ΣΠkΣ circuits, we know from Lemma
8, rank(Mfϕ) = s2O(k) for all partitions ϕ : X → Y ∪ Z.

Hence, the least size s of a depth-3 ΣΠkΣ circuit computing f would be Ω(g(k)n
k

2k
) =

nΩ(k), since k = o(n).

Thus, we can conclude that FPT-sized depth-4 ΣΠ
k
2ΣΠ2 circuits strictly contain the

class of FPT-sized depth-3 ΣΠkΣ circuits.

From Theorems 2 and 3 it follows that there are depth four ΣΠk/tΣΠ t arithmetic circuits
that cannot have dual representation of FPT size.

Lower bound against Σ ∧Σ ∧Σ circuits In this section, we consider Σ ∧O( k
t
) Σ ∧t Σ

circuits. By Lemma 5, we know that ΣΠO( k
t
)ΣΠ t circuit of size s can be transformed into

a Σ ∧O( k
t
) Σ ∧t Σ circuit of size s2max{k/t,t}. In fact Lemma 5 hold for any chosen t ≤ k. We

show that there is a polynomial computable by depth four ΠkΣ∧2 circuits of polynomial
size that cannot be computed by a Σ ∧o(k) Σ ∧k Σ circuit of size g(k)nO(1).

Let f ∈ F[X] be such that f = `d1 + `d2 + · · · + `dt where each `i is a linear form in n
variables and t = g(k)poly(n) for some computable g : N→ N. We prove:

Theorem 4. There is a polynomial p computed by a Πk/2Σ∧2 circuit of polynomial size
such that any Σ ∧α Σ ∧d Σ circuit computing p has size nΩ(k), for any α = o(k).

This in turn implies that a parameterized version of depth reduction in [AV08] is not possible
when the top layer of product gates have fan-in bounded by o(k):

Corollary 1. There is a parameterized family of polynomials that can be computed by depth
four circuits of polynomial size, but any depth four ΣΠo(k)ΣΠk circuit computing it requires
size nΩ(k).

Let ∂≤k(f) be the space spanned by kth order partial derivatives of a polynomial f . Let
dim(S) denote the dimension of the space spanned by polynomials in S ⊆ F[X]. We show
that Theorem 4 follows immediately from Lemma 9 and 10.

Lemma 9. Let α = o(k) and f = `d1 + `d2 + · · · + `dt where `1, . . . , `t are linear forms in
{x1, . . . , xn} and t = g(k)nc for some c > 0. Then dim(〈∂≤rfα〉) ≤ g′(k)no(k) for some
computable function g′ and r = o(k).

Proof. Note that, for any r < k, we have

〈∂=rfα〉 ⊆ F− span
{
fα−i � `d−r1j1

· . . . · `d−riji
| i ∈ [r], r1+...+ri=rj1,...,ji∈[t]

}
,

assuming α < r < k.
Now, there can be at most ri partitions of r into r1, . . . , ri. There are

(
t
i

)
linear terms

whose powers add up to r(d− 1). Hence the dimension of F− span(〈∂≤rfα〉) is bounded by∑α
i=1

(
t
i

)
ri ≤ k

(
t
α

)
kα. Given that t = g(k)nc for some c > 0 and g a function of k, we get

dim(F− span(〈∂≤rfα〉)) ≤ g′(k)no(k), where g′(k) = kg(k)k.
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Now, we give a parameterized polynomial with large dimension of partial derivatives:

Lemma 10. There is a polynomial p ∈ F[x1, . . . , xn] of degree k that con be computed by
polynomial size ΠΣ∧2 circuits with dim(∂≤k/2p) = nΩ(k).

Proof. The polynomial p is defined as follows:

p = (x21 + · · ·+ x22n
k

) · · · · · (x22(k−1)n
k

+1
+ · · ·+ x2n).

Let Bi ⊆ {x1, . . . , xn} such that Bi = {x 2n
k
(i−1)+1, . . . , x 2ni

k
}, ∀i ∈ {1, . . . , k

2
}.

Let T ⊂ {x1, . . . , xn}, with |T | = r. If ∃xp, xq ∈ T such that ∃i, xp, xq ∈ Bi, then ∂rp
∂T

= 0.
Otherwise, T contains exactly one variable from r choices of Bis, r <

k
2
, hence:

∂rp

∂T
= cT

∏
xt∈T

xt

k
2
−r∏
j=1

pij ,

where cT is a constant and p` = x22n
k
(`−1)+1

+ . . .+ x22n`
k

. So ∀` such that T ∩B` = φ, p` | ∂
rp
∂T

.

Therefore, dim(〈∂=rp〉) =
( k

2
r

) (
2n
k

)r
. For all r < k

2
, we can say dim(〈∂≤rp〉) = nΩ(k)

g(k)
for

some function g.

Combining this with Lemma 9, we can prove Theorem 4:

Proof (of Theorem 4). Suppose p is computable by a Σ ∧α Σ ∧d Σ circuit of top fan-in s
for α = o(k). Then by Lemma 9, we get dim(〈∂≤rp〉) ≤ s · g′(k)no(k), for any r < k. By

Lemma 10, we have dim(〈∂≤rp〉) = nΩ(k)

g(k)
. Therefore we conclude that s = nΩ(k).

Remark 2. Note that, in the above, it is necessary that α = o(k). Also, the value of d does
not affect the upper bound, in fact, the proof holds even when d = Ω(k). However, for
α = Ω(k), the above proof is not effective in proving the separation between depth-4 circuits
and depth-5 powering circuits.

4 Parameterized Identity Testing

In this section we look at depth three ΣΠΣ circuit where the fan-in of the Π gate is bounded
by a function of the parameter k. We give a deterministic white-box identity testing algorithm
for depth-3 ΣΠkΣ arithmetic circuits running in FPT-time with k as the parameter.

Theorem 5. Let f be a polynomial of the form
∑m

i=1

∏di
j=1 `i,j where `i,js are linear forms,

C be a circuit computing f where di ≤ k. There is a white-box identity testing algorithm for
C that runs in time g(k).size(C)O(1), where g is a computable function, i.e., the white-box
ACIT for ΣΠΣ circuits with syntactic degree as the parameter is in FPT.

11



Proof (of Theorem 5). The overall approach is as follows. We apply the Shpilka-Volkovich
generator on the polynomial f computed by a ΣΠkΣ circuit of size C. We observe that the
resulting polynomial has a polynomial size dual representation and hence can be thought of
as a non-commutative formula whose size is bounded by g(k) · poly(s) where s is the size of
C. The required result follows from Theorem 1.

Note that , since deg(f) ≤ k by Lemma 1 we have f(X) ≡ 0 if and only if Gk(f) ≡ 0.
Suppose that `i,j = a0,ij+a1,ijx1+a2,ijx2+. . .+an,ijxn where a1,ij, . . . , an,ij ∈ F. Substituting

polynomials for x1 = G1
k, x2 = G2

k . . . xn = Gn
k we get, Gk(f) ≡

∑m
i=1

∏di
j=1 `

′
ij, where,

`′ij = a0,ij + a1,ijG
1
k + a2,ijG

2
k · · ·+ an,ijG

n
k

= a0,ij + a1,ij

k∑
p=1

L1(yp)zp + a2,ij

k∑
p=1

L2(yp)zp + . . .+ an,ij

k∑
p=1

Ln(yp)zp

= a0,ij +
n∑
r=1

ar,ij

k∑
p=1

Lr(yp)zp

= a0,ij +
k∑
p=1

zp

n∑
r=1

ar,ijLr(yp) by rearranging the terms,

= a0,ij +
k∑
p=1

zp · hij(yp),

where hij is a univariate polynomial of degree at most n.

By expanding the product of sums to sum of products, we get:

Gk(f) =
m∑
i=1

t∑
l=1

gil,1(y1)gil,2(y2) . . . gil,k(yk) · z
eil,1
1 z

eil,2
2 . . . z

eil,k
k (1)

where t ≤ kk, ∀p ∈ [k], eil,p ≤ di ≤ k, gil,1(y1), . . . , gil,k(yk) are constants or univariate
polynomials in variables in {y1, y2, . . . , yk} of degree n. Now, it is not hard to see that (1)
is indeed a dual representation of the polynomial Gk(f). (See [Sax08] for more on dual
representations of polynomials.) Considering the ordering of the variables: y1 � y2 . . . �
yk � z1 � z2 . . . � zk, (1) can be assumed to be a non-commutative formula for Gk(f) of size
O(mnkk+1). Now, from Theorem 1, we have a deterministic white-box algorithm for testing
if Gk(f) ≡ 0 that runs in time polynomial in O(mnkk+1) = O(g(k)mn), where g(k) = kk+1.
Thus we have an g(k)poly(s) time deterministic white-box algorithm for testing if f ≡ 0 as
required.

In Section 5, we show that the approach used in Theorem 5 does not generalize to depth
four circuits.
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5 S-V generator preserves rank

In Section 3.3 we concluded that there are polynomials computed by circuits of depth higher
than three that do not have a dual representation. The natural next step would be to
investigate whether there is a possibility of getting a dual representation via the application
of S-V generator. However, in this section, we show that images of a polynomial f under the
S-V generator have many partitions where the coefficient matrix has non-FPT rank provided
f has one such partition.

Here, we show that the rank of the coefficient matrix of a polynomial acts as an invariant
for the S-V generator. By Lemma 6, this implies that the result in Theorem 5 cannot be
generalized to depth four ΣΠkΣΠk circuits.

Theorem 6. Let f ∈ F[x1, . . . , xn] be a polynomial of degree ≤ k. Let g = G2k(f). Then,

∃ϕ, rank(Mfϕ) ≥ r =⇒ Prϕ′ [rank(Mgϕ′ ) = Ω(r)] ≥ Ω(1/k2),

where the probability is taken over the uniform distribution over the set of all partitions of a
set of 4k variables into two parts with equal size.

Approach In order to prove that rank is preserved under the map Gk, we show that rank
many linearly independent rows of the polynomial f remain linearly independent in the
coefficient matrix of the image polynomial g = Gk(f). However, this does not immediately
give a partition in the variables of g so that the coefficient matrix has high rank. We show
that, in fact for at least 1/k2 fractions of the partitions of variables of g, the coefficient matrix
of g has large rank.

Proof (of Theorem 6). Fix a1, . . . , an ∈ F be distinct elements. Recall that the generator
Gk with respect to a1, . . . , an is defined as (G1

k, . . . , G
n
k), i.e, Gk(xi) = Gi

k ∀i ∈ {1, . . . , n}.
Consider :

Gk(xi) =
k∑
p=1

zpLi(yp)

=
k∑
p=1

zp

∏
j 6=i(yp − aj)∏
j 6=i(ai − aj)

=
k∑
p=1

zp
(yp − a1) . . . (yp − ai−1)(yp − ai+1) . . . (yp − an)

(ai − a1) . . . (ai − ai−1)(ai − ai+1) . . . (ai − an)

=
k∑
p=1

n∑
q=1

bpzpy
n−q
p (−1)qSYMn−1,q−1 (by expanding the product, bp is a constant)

=
∑
p∈[k]
q∈[n]

zpy
n−q
p cpqi (where cpqi = bp(−1)qSYMn−1,q−1(a1, . . . , ai−1, ai+1, . . . , an)).

13



Multiplying out k terms obtained above, we get

Gk(xi1xi2 . . . xik) =
∑

p1,...,pk∈[k]
q1...qk∈[n−1]

zp1 . . . zpky
n−q1
p1

. . . yn−qkpk

k∏
j=1

cpjqjij

Let Mk be the set of all degree k monomials in the variables {x1, . . . , xn}, and Snk be
the set of all monomials of the form

∏
i∈I ziy

n−qi
i , for all multi-sets I ⊆ {1, . . . , k} of size k

and q = (q1, . . . , qk) with 1 ≤ qi ≤ n− 1.
Let V = Span(Mk), and W = Span(Snk) be the vector spaces spanned by the sets. The

vector space V contains all polynomials in F of degree k, and hence the dimension of V is(
n+k
k

)
. Also, dimension ofW is bounded by

(
2k
k

)
nk. Note thatGk is indeed a linear map from V

to W . Let C be the
(
n+k
k

)
×
(
2k
k

)
nk matrix representing Gk. Then, ∀v ∈ V, Gk(v) = CTv ∈ W .

Now, we argue that C has full row-rank.

Claim. C has full row-rank.

Proof (of the Claim). Suppose C is not of full row rank. Then ∃ αi1 , . . . , αir ∈ R, such
that

∑r
j=1 αijC[ij] = 0 with αij 6= 0 for some j, where C[i] represents the ith row of C, and

r ≤ dim(V ). Hence, asGk is linear, we deduce that ∃vi1 , . . . , vir ∈ V such thatGk(vij) = C[ij].
Then we have:

r∑
j=1

αijGk(vij) = 0 =⇒
r∑
j=1

Gk(αijvij) = 0 =⇒ Gk(αi1vi1 + . . .+ αirvir) = 0

We can see that P ≡ α1vi1 + . . .+αirvir is a polynomial of degree at most k in F[x1, . . . , xn],
such that Gk(P ) ≡ 0, whereas P 6≡ 0 since ∃αij 6= 0. This contradicts Lemma 1. Hence, the
Claim is proved.

Consider a partition ϕ : X → A∪B and suppose rank(Mfϕ) ≥ r. Let m1, . . . ,mr be r linearly
independent rows of Mf (chosen arbitrarily). Let p1, . . . , pr be the polynomials representing
these rows, i.e., pi =

∑
S⊆BMf [mi,mS]mS. Then p1, . . . , pr are linearly independent, i.e.,

∀α1 . . . αr ∈ F,
∑r

i=1 αipi = 0 =⇒ ∀i, αi = 0. Let qi = Gk(pi), 1 ≤ i ≤ r then clearly,∑r
i=1 αiqi = 0 =⇒ ∀i, αi = 0. This however, is not sufficient, since the partition ϕ does not

imply a partition on Y ∪Z. To overcome this difficulty we consider the generator G2k rather
than Gk. Note that for any degree k polynomial f , G2k(f) ≡ 0 ⇐⇒ Gk(f) ≡ 0. Suppose
G2k : F[x1, . . . , xn] → F[Y ′ ∪ Z ′] where Y ′ = {y1, . . . , y2k} and Z ′ = {z!, . . . , z2k}. Consider
arbitrary partitions:Y ′ = Y1 ∪ Y2, |Y1| = |Y2| = k, and Z ′ = Z1 ∪Z2, |Z1| = |Z2| = k. Define

the map Ĝ2k = (Ĝ
(1)
2k , . . . , Ĝ

(n)
2k ), where

Ĝ
(i)
2k = Ĝ2k(xi) =

{
G

(i)
2k |{w=0|w∈Y2∪Z2} if i ∈ A

G
(i)
2k |{w=0|w∈Y1∪Z1} if i ∈ B

Note that the polynomial G
(i)
2k |{x=0|x∈Y2∪Z2} is indeed a copy of Gi

k for every i, is defined
over Y1 ∪ Z1 for i ∈ A, and over Y2 ∪ Z2 for i ∈ B. Now, the partition ϕ naturally induces
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a partition ϕ′ of Y ′ ∪ Z ′. Let q′i = Ĝ2k(pi), then from the above observations, we have that
the polynomials q′1, . . . , q

′
i are linearly independent. Since these polynomials correspond to

rows in the matrix Mgϕ′ , we have rank(Mgϕ′ ) ≥ r. Now, to prove the required probability
bound, note that the choice of the partitions Y ′ = Y1 ∪ Y2 and Z ′ = Z1 ∪ Z2 was arbitrary,

and the rank bound holds for every such partition. There are
(
2k
k

)2
such partitions. Thus

Pr[rank(Mgϕ′ ) ≥ r] ≥
(
2k
k

)2
/
(
4k
2k

)
= Ω(1/k2).

Note that, in the above the rank preservation is argued against G2k rather than Gk.
Though, we do not know if Theorem 6 holds true when G2k is replaced by Gk, we conclude
with the observation that, polynomials with high partial derivative dimension will have high
rank coefficient matrix for some partition ϕ.

6 Conclusions and Future Directions

We studied complexity of polynomials parameterized by degree and continued the study
of parameterized complexity of the arithmetic circuit identity testing problem initiated
in [Mül08] and [CR15]. Our results indicate possibility of obtaining more special classes
of ACIT that are fixed parameter tractable. We conclude with the following open questions:

– Extend the parameterized separation of depth three and four circuits to higher depths,
perhaps with the restriction of multi-linearity etc,.

– Improve Theorem 6 to the generator Gk rather than G2k.
– Obtain a black-box version of Theorem 5.
– Obtain a parameterized version of the depth reduction by Agrawal and Vinay [AV08].
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