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Abstract. We consider the problem of obtaining parameterized lower bounds for the
size of arithmetic circuits computing polynomials with the degree of the polynomial
as the parameter. We consider the following special classes of multilinear algebraic
branching programs:

1) Read Once Oblivious Branching Programs (ROABPs),

2) Strict interval branching programs,

3) Sum of read once formulas with restricted ordering.

We obtain parameterized lower bounds (i.e., nΩ(t(k)) lower bound for some function t
of k) on the size of the above models computing a multilinear polynomial that can be
computed by a depth four circuit of size g(k)nO(1) for some computable function g.

Further, we obtain a parameterized separation between ROABPs and read-2 ABPs.
This is obtained by constructing a degree k polynomial that can be computed by a
read-2 ABP of small size such that the rank of the partial derivative matrix under any
partition of the variables is large.



1. Introduction

Algebraic Complexity Theory is concerned with complexity of computing polynomials using
elementary arithmetic operations such as addition and multiplication over an underlying ring
or field. Valiant [1] formalized the notions of algebraic complexity theory and posed proving
lower bound on the size of arithmetic circuits computing explicit polynomials as the primary
challenge for the area. Following Valiant’s work, there has been intense research efforts in
the past four decades to prove lower bounds on the size of special classes of arithmetic cir-
cuits such as constant depth circuits, multilinear formula and non-commutative models. (See
[2, 3] for a survey.) Despite several attempts, the best known size lower bound for the size
of an arithmetic circuit computing an explicit polynomial is only super linear [4].

Since any meaningful classification of complexity of polynomials is far from settled, one
possibility is to look for relaxed notions of tractability such as parameterized complexity
or approximation of polynomials. The notion of approximation of polynomials has been
studied in a more geometric setting through various forms of degenerations [5]. In this
article, we focus on parameterized complexity of polynomials.

Parameterized Complexity Theory is a multi-dimensional study of computational prob-
lems where the complexity of a problem is analyzed in terms of the input size and an addi-
tional parameter which can be independent of the input size. This multidimensional view of
computation was introduced by Downey and Fellows in their seminal work [6], where they
developed foundations of parameterized complexity theory. A decision problem with input
size n and parameter k is said to be fixed-parameter tractable (FPT) if it has a determinis-
tic f(k)poly(n) time algorithm. The notion of intractability in parameterized complexity is
captured by the complexity class XP and hierarchies of classes such as the W-hierarchy and
A hierarchy [6].

Engels [7] initiated the development of a parameterized theory for algebraic complexity
classes to obtain algebraic analogue of the theory developed by Downey and Fellows [6]. He
suggested suitable notions of tractability and reductions and obtained complete problems for
some of the classes introduced, for families of polynomials with a generic parameter.

While a theory with generic parameter is essential to the parameterized study of algebraic
complexity, defining specific parameterizations for polynomials and study of their complex-
ity is a first step in this direction. Further, specific parameterizations of polynomial might
lead to more insights on the complexity of polynomials.

Müller [8] was the first to introduce parameterizations on polynomials in the context of
designing parameterized algorithms for problems on polynomials, such as testing for identity
of polynomials given as arithmetic circuits (ACIT). ACIT is one of the fundamental prob-
lems in algebraic complexity theory and has close connections to the circuit lower bound
problem [9]. Müller studied parameters such as the number of variables in the polynomial,
multiplication depth of the circuit computing the polynomial etc., and obtained efficient ran-
domized parameterized algorithms for ACIT.

Polynomials with the degree bounded by a parameter are widely used in the development
of efficient parameterized algorithms [10, 11, 12] and in expressing properties of graphs [13].



For example, in [12], the polynomial representing homomorphisms between two graphs has
indeed degree equal to the parameter, i.e., the number of vertices in the pattern graph. An ef-
ficient computation of the polynomial defined in [12] by arithmetic formulas leads to space-
efficient algorithms for detecting homomorphisms from a graph of bounded treewidth. Thus
the study of parameterized complexity of polynomials with the degree of a polynomial as the
parameter is important for understanding the limitations of these parameterized algorithms.

Let n be the number of variables and k be a parameter (e.g., degree of the polynomial).
Throughout the article, t(k) denotes a computable function that depends only on the param-
eter, e.g., t(k) = 2k, t(k) = 22k , t(k) =

√
k etc. Any circuit is said to be of fpt size if the

size of the circuit is bounded by t(k)nO(1) for some computable t. By a parameterized lower
bound, we mean a lower bound of the form nΩ(t(k)) for a computable function t. It may be
noted that the task of proving parameterized lower bounds is more challenging than classi-
cal lower bounds. In the case of degree as a parameter, most of the existing lower bounds
of the form nΩ(

√
k)(e.g., [14, 15, 16]) for constant depth circuits are already parameterized

lower bounds. In contrast, the lower bounds for other special classes such as multilinear
formula [17, 18] do not translate easily, especially since the hard polynomials involved are
of high degree.

To understand the primary challenge in translating the results in [18, 17] to the param-
eterized setting we need to delve a bit on the techniques used for proving lower bounds.
Raz [17] used the notion of partial derivative matrix under a partition of variables with equal
parts (See Section 2 for a detailed definition) as a measure of complexity for polynomials.
The idea is to show existence of such partitions where polynomials computed by a multi-
linear formula of small size will have small rank for the partial derivative matrix. Then, for
any polynomial that has large rank under every partition, a natural lower bound on the size
follows. However, the analysis done in [17] or subsequent works [19, 18, 20] do not carry
forward when the polynomials are parameterized by the degree. Similarly the construction of
the polynomial family with high rank partial derivative matrix in [17] and subsequent works
do not generalize to the parameterized setting. The main challenge here is construction of
low degree polynomials that have maximum value of the measure defined by Raz [17]. Fur-
ther, obtaining useful upper bounds on the measure for polynomials computed by special
classes of circuits also remains a challenging task in the parameterized setting.

In this article we address the challenge of translating lower bounds for the size of multi-
linear restrictions of arithmetic circuits to parameterized lower bounds.

Results We prove parameterized lower bounds on the size of a ROABP (Theorem 4.1),
a strict-interval ABP (Corollary 4.8) and sum of ROPs with restricted ordering of variables
(Theorem 4.11) against two families of explicit polynomials. We also obtain a parameterized
size separation between ROABPs and read-2 ABPs (Corollary 4.4). For the first three lower
bounds (Theorem 4.1, Corollary 4.8 and Theorem 4.11), we construct a parameterized family
of polynomials (Theorem 3.4) such that under every equal sized bi-partition of the variables,
the rank of the partial derivative matrix is the maximum possible up to a factor that depends



only on the parameter. The construction is built on the polynomial defined by Raz and
Yehudayoff [19] and then does a careful analysis of weighted matchings in a complete graph.
For the parameterized separation (Corollary 4.4) we construct a parameterized family of
polynomials that can be computed by quadratic size read-2 oblivious ABPs (Theorem 4.3),
such that under any partition of the variables into two equal parts, the rank of the partial
derivative matrix is high (Theorem 3.6.)

Using the second parameterized family of polynomials we construct, we are able to
obtain a parameterized version of the separation between read-2 ABPs and ROABPs given
in [21] (Theorems 4.2,4.3). This is because this parameterized family of polynomials, where
each polynomial can be written as sum of three read-once polynomials, is a parameterized
variant of the hard polynomial given in [21] (Theorem 3.6).

Related Works In [22], Chen and Fu studied the parameterized complexity of testing
monomials in multivariate polynomials paraemterized by the degree. These results were
further improved in [23].

In [24], Chauhan and Rao studied ACIT with degree as the parameter and obtained a
randomness-efficient parameterized algorithm for ACIT parameterized by degree. In [25]
the authors along with Prakash studied polynomials parameterized by the degree and showed
limitations of an existing approach in obtaining deterministic parameterized algorithms for
ACIT.

2. Preliminaries

In this section we give necessary definitions related to arithmetic circuits. For more details
the reader is referred to an excellent survey by Shpilka and Yehudayoff [3].

Let F denote a field. Unless otherwise stated, F is considered as an arbitrary field. Let
X = {x1, . . . , xn} denote the set of variables. For a polynomial p ∈ F[X], let var(p) denote
the set of variables that p is dependent on and deg(p) denote its degree.

Arithmetic Circuits An arithmetic circuit is a model for computing polynomials using the
basic operations + and ×. An arithmetic circuit C computing a polynomial p is a directed
acyclic graph, where every node (called a gate) has in-degree two or zero. The gates of
in-degree zero are called input gates and are labeled by constants from the field F on which
the polynomial is defined, or variables from the set X of input variables of the polynomial.
Internal gates of C compute either + (sum) or × (product) of their inputs. Gates of out-
degree zero are called output gates. Typically an arithmetic circuit will have a single output
gate. Every gate in the circuit C is associated with a unique polynomial in F[X]. The
polynomial computed by the circuit, p, is the polynomial associated with its output gate.

The complexity of arithmetic circuits is measured in terms of size and depth. Size is
defined as the number of gates in the circuit. The depth of the circuit represents the length
of the longest path from the output node (root) to an input node (leaf) of the circuit. Since a



constant depth arithmetic circuit where fan-in of every gate is bounded by 2 (or even a con-
stant) cannot even read all of the inputs, we assume unbounded fan-in in the case of constant
depth circuits. Arithmetic circuits of constant depth have received wide attention [2].

Recall that a monomial
∏n
i=1 x

αi
i is multilinear (also known as square free) if αi ≤ 1

for 1 ≤ i ≤ n. A polynomial p ∈ F[X] is said to be multilinear if p has only multilinear
monomials. Multilinear circuits where every gate in the circuit computes a multilinear poly-
nomial are natural models of computation for multilinear polynomials. However, it is not
known if every efficiently computable multilinear polynomial is also efficiently computable
by multilinear circuits [3]. While multilinear circuits are based on a semantic restriction on
the circuit, a syntactic version of multilinear circuits received a lot of attention in the litera-
ture. An arithmetic circuit C is said to be syntactic multilinear if for every product gate with
inputs g, h and associated polynomial f = g× h in C, the set of variables that appear under
the sub-circuit rooted at g is disjoint from that of h.

Arithmetic Formulas An arithmetic circuit where the underlying graph is a tree is known
as an arithmetic formula.

Definition 2.1. (Read-once Polynomials) An arithmetic formula is said to be a read-once
formula (ROF for short) if every variable appears as a label in at most one leaf. Polynomials
computed by ROFs are known as read-once polynomials (ROPs for short).

It may also be noted that ROFs are a proper subclass of syntactic multilinear formulas.

Algebraic Branching Programs An algebraic branching program (ABP) P is a directed
acyclic graph with a source vertex s of in-degree 0 and a terminal vertex t of out-degree
0. The rest of the vertices can be divided into layers L1, L2, . . . , Lr−1 between s and t, s
being the only vertex in L0, the first layer, and t being the only vertex in the last layer Lr.
Edges in P are between vertices of consecutive layers. Every edge e is labeled by either
a constant from F or a variable from X . For a directed path ρ in P , let w(ρ) denote the
product of edge labels in ρ. For any pair of nodes u, v in P let [u, v]P denote the polynomial∑

ρ is a u→v pathw(ρ). The polynomial computed by P is [s, t]P . The size of an ABP is the
total number of nodes and edges in it and the depth of an ABP is the total number of layers
in it excluding the layers containing s and t.

An ABP P is said to be syntactically multilinear if every input variable is read at most
once along any path from s to t in P . An ABP is said to be oblivious if the edges between
any two layers Li and Li+1 are all labeled by the same variable xj .

Definition 2.2. (Read-once Oblivious ABPs) A Read-once Oblivious ABP (ROABP) P is
a syntactically multilinear ABP where the input variables are read at most once, in a fixed
order, along any path from s to t, and any variable occurs as a label for edges between at
most one pair of layers of the ABP P .



Let π be a permutation of the variables. An interval in π is a set of the form {π(i), π(i+
1), . . . , π(j)} for some i < j. Arvind and Raja [26] studied a restriction of multilinear ABPs
called as interval ABPs where every node in the ABP computes a polynomial whose variable
set forms an interval in {1, . . . , n}. In this article, we consider a restriction of interval ABPs
which we call as strict interval ABPs.

Definition 2.3. A syntactically multilinear ABP P is said to be a π-strict interval ABP, if for
any pair of nodes (a, b) in P , the index set Xab of the variables occurring on all paths from
a to b is contained in some π-interval Iab in [n] and for any other node c in P , the intervals
Iab and Ibc are non-overlapping.

In the following we define notion of partial derivative matrix whose rank is an important
complexity measure for polynomials.

Partial Derivative Matrix of a polynomial

Nisan [27] defined the partial derivative matrix of a polynomial, considered its rank as a com-
plexity measure for non-commutative polynomials and proved exponential lower bounds for
the size of non-commutative formulas and ABPs. Raz [17] considered a variant of the partial
derivative matrix and proved super polynomial size lower bounds for multilinear formulas.
We describe the partial derivative matrix introduced by Raz [17] in more detail.

A partition of X is an injective map ϕ : X → Y ∪ Z, where Y and Z are two disjoint
sets of variables such that |X| = |Y ∪ Z|. An equi-partition is a partition ϕ : X → Y ∪ Z
such that |Y | = |Z| = |X|/2.

Definition 2.4. [17] Let f ∈ F[x1, . . . , xn] be a polynomial of degree k, ϕ : X → Y ∪Z be a
partition of the input variables of f . Then the partial derivative matrix of f with respect to ϕ,
denoted by Mfϕ is an A×B matrix, where the rows are indexed by the set of all multilinear
monomials µ of degree at most k in the variables Y , and columns indexed by the set of all
multilinear monomials ν of degree at most k in the variables in Z, i.e., A =

∑k
i=0

(|Y |
i

)
and

B =
∑k

i=0

(|Z|
i

)
.

For monomials µ and ν respectively in variables Y and Z, the entry Mfϕ(µ, ν) is the
coefficient of the monomial µν in f .

For a multilinear polynomial p ∈ F[X] and an equi-partition ϕ, let rankϕ(p) be the rank
of the matrix Mpϕ over F.

Let X = {x1, . . . , xn} be the set of variables where n is even. A partition of X is an
injective function ϕ : X → Y ∪ Z, where Y and Z are two disjoint sets of variables. A
partition ϕ is said to be an equi-partition if |Y | = |Z| = n/2. In the remainder of the article,
we assume that the number of variables n is an even number. We use the partial derivative
matrix defined by Raz for polynomials parameterized by degree, k.

The following fundamental properties of the rank of a partial derivative matrix were
given by Raz [17]. We include a proof for completeness.



Lemma 2.5. Let f, g and h be multilinear polynomials of degree at most k in F[X]. Then,

(Sub-additivity): If f = g + h, then ∀ϕ : X → Y ∪Z, rankϕ(f) ≤ rankϕ(g) + rankϕ(h),
with equality when var(g) ∩ var(h) = ∅.

(Sub-multiplicativity): If f = g × h then ∀ϕ : X → Y ∪ Z, rankϕ(f) ≤ rankϕ(g) ·
rankϕ(h), with rankϕ(f) = rankϕ(g)× rankϕ(h) when var(g) ∩ var(h) = ∅.

Proof:
Let ϕ : X → Y ∪ Z be any partition of X , A =

∑k
i=0

(|Y |
i

)
and B =

∑k
i=0

(|Z|
i

)
.

Sub-additivity: Suppose that Mgϕ and Mhϕ be matrices of order A×B obtained respec-
tively from Mgϕ and Mhϕ by adding additional zero entries. Then Mfϕ = Mgϕ + Mhϕ

and hence rankϕ(g + h) ≤ rankϕ(g) + rankϕ(h), as the rank of a matrix is a sub-additive
function.

Additionally, if var(g) ∩ var(h) = ∅, then for any two monomials m1 ∈ F[Y ] and
m2 ∈ Z, either Mgϕ [m1,m2] = 0 or Mhϕ [m1,m2] = 0. Therefore, rankϕ(g + h) =
rankϕ(g) + rankϕ(h).

Sub-multiplicativity: Let g and h be variable disjoint, var(g) ∩ var(h) = ∅. Let ϕ|g :
Xg → Y1 ∪Z1, and ϕ|h : Xh → Y2 ∪Z2, where Xg = var(g), Xh = var(h), Y = Y1 ∪ Y2,
Z = Z1 ∪ Z2. Let, M = Mgϕ|g ⊗Mhϕ|h where ⊗ denotes the tensor product.

Note that each row index of M can be written as m11m12, a product of a multilinear
monomial m11 in variables in Y1, and a multilinear monomial m12 in variables in Y2, re-
spectively. Similarly, each column index of M can be written as m21m22, a product of a
monomial in variables in Z1, m21 and a monomial in variables in Z2, m22 respectively.
Now, Mfϕ is the sub-matrix of M obtained by removing rows and columns that are indexed
by monomials of degree larger than k. Also, rows and columns of M that are indexed by
monomials of degree larger than k will have no non-zero entries, for, f = g × h and f is a
degree k multilinear monomial. Hence, we conclude that rankϕ(f) = rankϕ(g) · rankϕ(h).

ut

Rank upper bound for degree-k polynomials

In the following, we assume that k << n/2.

Lemma 2.6. For any equi-partition ϕ : X → Y ∪ Z, and any multilinear polynomial p of
degree k, we have rankϕ(p) ≤ (k + 2)

(n/2
k/2

)
.

Proof:
Let p ∈ F[x1, . . . , xn] be a degree-k multilinear polynomial. We fix an arbitrary equi-
partition ϕ : X → Y ∪ Z with |Y | = |Z| = n/2.

For d ≤ k let Ad be a matrix constructed from Mpϕ such that rows labeled by degree d
monomials in the variables x ∈ X such that ϕ(x) ∈ Y are copied from Mpϕ , and all other
rows correspond to all zero entries. We can now express Mpϕ = A0 +A1 + · · ·+Ak.



Then by sub-additivity, rankϕ(p) ≤
∑k

d=0 rank(Ad). Since p has degree bounded by
k, all but

(n/2
k−d
)

columns of Ad are zero columns. Thus rank(Ad) ≤ min{
(n/2
d

)
,
(n/2
k−d
)
}.

Substituting these values for rankϕ(p), we have, rankϕ(p) ≤ 2
∑k/2

d=0

(n/2
d

)
≤ (k+ 2)

(n/2
k/2

)
.

This proof holds for k < n/2. Since in the parameterized domain, k is typically much
smaller than n, the above calculations are sufficient for us. ut

3. Construction of high rank polynomials

For any complexity measure µ : F[X]→ R≥0 for polynomials, to be useful, we need a class
of polynomials where the measure is “small” and an explicit family of polynomials where
the measure is “large”. In this section, we consider the latter task and show construction of
two parameterized polynomial families f = (fn,2k)k≥0 and h = (h2n,k) such that the rank
of the partial derivative matrix is large for almost all partitions.

The first family is computable by a depth four circuit of fpt (i.e., t(k)nO(1) where t(k) =
kO(k)) size. For any partition ϕ, rankϕ(f) matches the maximum possible value defined by
the upper bound described in Lemma 2.6, upto a factor that depends only on the parameter.

The second family h is a sum of three ROPs, also computable by a circuit of fpt size.
In the case of h, rankϕ(h) attains the maximum possible value upto a constant factor in the
exponent. Hence, rankϕ(h) ≥ t2(k)nck where t2 is a computable function on k and c < 1/2.

A full rank polynomial

We know, by Lemma 2.6, that for a multilinear polynomial g of degree k in n variables, the
maximum possible value of rankϕ(g) over all partitions ϕ is at most (k + 2)

(n/2
k/2

)
. Though

it is possible to construct polynomials that achieve this bound under a fixed partition ϕ, it
is not immediately clear if there is a polynomial g computed by small circuits that is full
rank under every equi-partition. In the following, we give the description of a multilinear
polynomial of degree k that has rank nk/2/t(k) where t is a function that depends only on
k. We assume that 2k divides n.

We consider K2k, the complete graph on 2k vertices. Suppose V1 ∪ · · · ∪ V2k = X be
a partition of the variable set X = {x1, . . . , xn} such that |Vi| = |Vj | for 1 ≤ i < j ≤ 2k.
For convenience let Vi = {x(i−1)n/2k+1, . . . , xin/2k}, where we assume a natural ordering
among the variables, i.e., xj � xi, ∀j ≥ i. We consider the variable set Vi as the label
of vertex i of the graph K2k for 1 ≤ i ≤ 2k. For each edge (i, j) of K2k, we define a
polynomial pij on the vertex set Vi ∪ Vj . These edge polynomials pij will be used in the
subsequent construction of the polynomial f .

LetM be the set of all possible perfect matchings on G = K2k. We define a parameter-
ized family of polynomial f = (fn,2k)n>1,2k|n, fn,2k ∈ G[x1, x2, . . . , xn] as follows:

f(x1, x2, . . . , xn) =
∑
M∈M

ζM
∏

(i,j)∼M

(1 + pij(Vi ∪ Vj)),



where ζM for M ∈ M are formal variables. We define the edge polynomial pij as an
n/k-variate quadratic multilinear polynomial, such that,

pij(xi, . . . , xj+n/2k−1) =
∑
k<`

ωk,`xkx`.

Here ωi,j , for 1 ≤ i < j ≤ n/k, are also formal variables. So the polynomial f is defined
over G[X] where G is an extension of the field F containing {ωi,j} ∪ {ζM |M ∈ M}. The
addition of 1 to pij ensures an increase in the rankϕ(pij) by 1 if there is no monomial xaxb
in pij such that xa, xb are mapped to the same partition Y or Z.

Note that fn,2k is a degree 2k polynomial in n variables. When n and k are clear from the
context, we use f to denote fn,2k. Let G = F({ζM |M ∈M}∪ {ωi,j | 1 ≤ i < j ≤ n/k}),
i.e the rational function field of the polynomial ring F[{ζM |M ∈M}∪{ωi,j | 1 ≤ i < j ≤
n/k}].

We note that by definition, f is multilinear and can be computed by a depth-4 circuit,
parameterized by the degree, 2k. As there are kO(k) perfect matchings inM, and a circuit
of size (kn)(O(1)) can compute the polynomial

∏
(i,j)∈M (1 + pij), the size of the depth-4

circuit computing f is at most kO(k)nO(1), which is fpt with k as the parameter and n as the
size of the input.

In the remainder of the section, we argue that the polynomial family f defined above has
almost full rank under every partition ϕ : X → Y ∪ Z, such that |Y | = |Z| = |X|/2. Now,
the partition function divides the set of variables X into two equal halves, but it might not
divide the individual sets Vi ∪ Vj , the set of variables on which the edge polynomial pij is
defined, in two equal halves. In that case, we define a new quantity, imbalance, as follows.

Definition 3.1. Consider an equi-partition function ϕ : X → Y ∪ Z. A set V ⊂ X is said
to be `-unbalanced with respect to ϕ if |V |2 − |ϕ(V ) ∩ Z| = ` = |ϕ(V ) ∩ Y | − |V |2 .

It may be noted that ` can be a positive or negative accordingly as |ϕ(V )∩Y | > |ϕ(V )∩
Z| or otherwise. Our first observation is, even if the set V = Vi ∪ Vj is `-unbalanced for
` < n/4k for all edges (i, j), rankϕ(pij) remains large:

Lemma 3.2. If Vi ∪ Vj is `-unbalanced with respect to a partition ϕ : X → Y ∪ Z, then
rankϕ(pij) = Ω(n/2k − |`|).

Proof:
Without loss of generality, we consider the case ` > 0. As already defined, Vi ∪ Vj =
{x(i−1)n/2k+1, . . . , xjn/2k} and we denote pij as p for the rest of the proof. Let us assume,
for the ease of calculations, Vi∪Vj = {x1, . . . , xn/k}. Let ϕ be such that for all xq ∈ Vi∪Vj ,

ϕ(xq) =

{
yq, if q ≤ n/2k + `,

zq−(n/2k+`) otherwise.
(1)



Since p = pij is a quadratic polynomial, the rows of Mpϕ are indexed by degree at
most one monomials ∅, y1, . . . yn/2k+` and degree two monomials of the form yiyj , 1 ≤ i <
j ≤ n/2k + `. Similarly, the columns are indexed by ∅, z1, . . . , zn/2k−` and degree two
monomials zizj , 1 ≤ i < j ≤ n/2k − `.

We claim that the rows and columns indexed by degree 2 monomials will contribute
at most 2 to the rank. This is because all row-indexing monomials yiyj will have a non-
zero entry ωi,j only corresponding to the first column indexed by ∅. Similarly, all column-
indexing monomials zizj have one non-zero entry along the first row, indexed by ∅. The first
row and the first column can together contribute a rank of at most 2.

Now, it is required to show that the submatrix ofMpϕ with rows indexed by ∅, y1, . . . yn/2k+`

and columns indexed by ∅, z1, . . . , zn/2k−` has rank Ω(n/2k − |`|).
The (yi, zj)

th entry of Mpϕ contains ωi,n/2k+j . The sub-matrix of Mpϕ on rows and
columns indexed by degree-1 monomials ∅, y1, . . . yn/2k+` and ∅, z1, . . . , zn/2k−` has di-
mension n/2k+ ` by n/2k− `. By suitably substituting the formal variables ωi,n/2k+j with
values from F, we can ensure that the submatrix of Mpϕ is of full column-rank when ` is
positive. Thus rankϕ(p) = Ω(n/2k − `). Therefore, over any edge (i, j) in G and any ϕ,
the polynomial pij has rank Ω(n/2k − |`|).

Now, to complete the proof we need to show that the argument above works even when ϕ
does not satisfy (1). In this case, we can re-index the variables in Vi∪Vj so that the partition
ϕ satisfies (1) after the re-indexing and proceed with the argument above. This re-indexing
only induces a permutation of the rows and columns the matrix Mpϕ and hence does not
affect rankϕ(p). This completes the proof.

ut

Before we proceed with proof of the required lower bound on the rank of f under any
partition, we define imbalance on each variable set Vi, denoted by D(Vi). If the imbalance
on Vi ∪Vj for an edge (i, j) is `, we want D(Vi), D(Vj) to be such that ` = D(Vi) +D(Vj).

Definition 3.3. For a partition ϕ : X → Y ∪ Z, the imbalance on a set Vi is defined as

D(Vi)
def
= |ϕ(Vi) ∩ Y | −

|Vi|
2
.

Let Yi = ϕ(Vi)∩Y, Zi = ϕ(Vi)∩Z. We know ∀i ∈ [2k], |Vi| = n
2k . So,D(Vi) = |Yi|− n

4k
is the imbalance of ϕ on Vi.

Under a partition ϕ, in the extreme cases, all variables in Vi are mapped to Y , or none of
them are. Hence, |Yi| ∈ [0, n2k ], since |Vi| = n/2k. It follows that D(Vi) ∈ [−n4k ,

n
4k ].

We are now ready to give the rank bound on the polynomial family f .

Theorem 3.4. For the parameterized multilinear polynomial family f = (fn,2k)n,k≥0 such
that f(X) =

∑
M∈M ζM

∏
(i,j)∼M (1 + pij), we have,

rankϕ(fn,2k) = Ω

(
nk

(2k)2k

)
,



for every equi-partition ϕ : X → Y ∪ Z and k > 3.

Proof:
Let us fix ϕ to be an arbitrary equi-partition of X . Note that by the definition of f , it
is enough to show that for all equi-partitions ϕ, there exists an optimal matching N and
fN =

∏
(i,j)∈N (1 + pij) such that fN is of full rank i.e., rankϕ(fN ) = Ω( nk

(2k)2k
). Then we

set ζN = 1 and ζM = 0 for all other M ∈M, so that f is of almost full rank.
Since fN is multilinear, it is enough to prove that ∀(i, j) ∈ N , rankϕ(pij) = Ω( n

k2
).

This would imply that our optimal perfect matching N is such that all edges (i, j) in N have
very low imbalance under ϕ. Our argument is a construction of the required matching N .

Let us consider an arbitrary matching M ∈ M. We construct N from M . For that
purpose, we need to analyse each edge e = (i, j) in the matching M . Hence, we associate
a weight to all edges e with respect to ϕ such that wt(e) = |D(Vi) + D(Vj)|. The weight
of the matching M denoted by wt(M), is the sum of the weights of the edges in M , i.e.,
wt(M) =

∑
e∈M wt(e).

In the following, we give an iterative procedure, that given M , produces a matching N
with the required properties. The procedure obtains a new matching of smaller weight than
the given matching in each iteration. The crucial observation then is that matchings that
are weight optimal with respect to the procedure outlined below indeed have the required
property.

We say that a matching N is good with respect to ϕ, if ∀ e = (i, j) ∈ N , the weight
does not exceed a threshold t, i.e., wt(e) ≤ t = n/2k − n/(2k(k − 1)). Note that if M
is good then for every edge (i, j) ∈ M , we have Vi ∪ Vj is `-unbalanced for some ` with
|`| ≤ n/2k−n/(2k(k−1)). Then, by Lemma 3.2 we have rankϕ(fM ) ≥ (n/(2k(k−1)))k.
In that case, the matching M is the optimal matching N we desire.

Suppose the matching M is not good. Let e = (i, j) ∈ M be a bad edge such that
wt(e) > n/2k − n/2k(k − 1). If there are multiple bad edges, e is chosen such that wt(e)
is the maximum, breaking ties arbitrarily. Note that we can assume that D(Vi) and D(Vj)
are of the same sign for wt(e) to have the highest value. Without loss of generality, assume
that both D(Vi) and D(Vj) to be non-negative, i.e., wt(e) = D(Vi) +D(Vj). Since ϕ is an
equi-partition, we have∑

m∈[2k]

D(Vm) =
∑
m∈[2k]

(
|Ym| −

n

4k

)
=
∑
m∈[2k]

|Ym| −
n

2
= 0

=⇒
∑

m∈[2k]\{i,j}

D(Vm) = −wt(e)

=⇒
∑

e′∈M\{e}

sgn(e′)wt(e′) = −wt(e) < −n
2k

+
n

2k(k − 1)
,

where sgn(e) is ±1 depending on the sign of wt(e). By averaging, there is an edge e1 ∈M
such that,

sgn(e1)wt(e1) = − wt(e)

(k − 1)
<

−n
2k(k − 1)

+
n

2k(k − 1)2
.



Suppose e1 = (i1, j1). The idea is that on swapping the end-points (i, j) of the bad edge
e with that of the edge e1, (i1, j1), we will get a new matching M ′ with two new edges, all
other edges being from M . We claim that this matching M ′ has lesser total weight wt(M ′)
than wt(M). We can repeat this process to reduce weights of bad edges in M ′ till we obtain
a matching N where all edges are good.

For the ease of analysis, let D(Vi) = a, D(Vj) = b, D(Vi1) = c, D(Vj1) = d. The new
matching is constructed based on the values of a, b, c and d. Since c + d = wt(e1) < 0, it
must be that either both c, d are negative, or any one of them is negative, i.e., c < 0, d ≥ 0
or c ≥ 0, d < 0. Here, we discuss both these cases.

Case 1 Suppose c, d < 0. Then, |a+b|+|c+d| > |a+c|+|b+d|. We replace the edges (i, j)
and (i1, j1) by (i, i1), (j, j1) to get a new matching M ′. We have wt(M ′) < wt(M).

Case 2 Either c ≥ 0 and d < 0 or c < 0 and d ≥ 0. Without loss of generality, assume that
c ≥ 0 and d < 0. We argue even if c is positive, it is smaller than at least one of the
values a, b, thus making swapping end-points of e with e1 yield a better matching.

We know, the least value d can have is−n/4k. Suppose c > n
4k −

n
2k(k−1) + n

2k(k−1)2
.

Then we have d < −n
2k(k−1) + n

2k(k−1)2
− c < −n

4k which is impossible. Therefore, we

have c ≤ n
4k −

n
2k(k−1) + k

2k(k−1)2
.

So, if c > a, b, then a + b < 2c ≤ n
2k −

n
k(k−1) + n

k(k−1)2
. For k > 3, this is a

contradiction since wt(e) = a+ b > n
2k −

n
2k(k−1) , and this lower bound seems to be

higher than the upper bound. Hence, we consider the following sub-cases:

Subcase (i) a > c. Then a + b > c + b, replace the edges (i, j) and (i1, j1) with the
edges (i, j1) and (i1, j) to get the new matching M ′.

Subcase (ii) b > c. Then a + b > a + c, replace (i, j) and (i1, j1) with the edges
(i, i1) and (j, j1) to get the new matching M ′.

The second case above also implies that |b+d| ≥ 0 and |a+c| ≥ n
2k−

n
2k(k−1) + k

2k(k−1)2
.

We know |a+ b| ≤ n/2k. Therefore, the least decrease in total weight of matching is:

|a+ b|+ |c+ d| − |a+ c| − |b+ d| = n

2k
+

(
n

2k(k − 1)
− n

2k(k − 1)2

)
−
(
n

2k
− n

2k(k − 1)
+

k

2k(k − 1)2

)
− 0

=
n

k(k − 1)
− n

k(k − 1)2
=

2t

(k − 1)
.

For the new matching M ′ obtained from M as above, we have one of the following
properties:

• It has smaller total weight than M , i.e., wt(M ′) < wt(M), or



• IfM has a unique maximum weight edge, then the weight of any edge inM ′ is strictly
smaller than that in M , i.e., maxe′∈M ′ wt(e

′) < wt(e), or

• The number of edges that have maximum weight in M ′ is strictly smaller than that in
M , i.e., |{e′′ | wt(e′′) = maxe′∈M ′ wt(e

′)}| < |{e′′ | wt(e′′) = maxe′∈M wt(e′)}|.

Since all of the invariants above are finite, by repeating the above procedure a finite num-
ber of times we get a matching N ∈ M such that any of the above steps are not applicable.
That is, for every e′ ∈ N , wt(e′) ≤ n/2k−n/2k(k−1). In fact, the largest value of wt(e) =
n/2k, and least decrease is wt(M)−wt(M ′) ≥ t/(k− 1) = n/2k(k− 1)− n/2k(k− 1)2

by averaging. So, in at most k iterations for each edge, i.e., O(k2) iterations, we will obtain
a matching where all edges have zero imbalance. The matching we need has low imbalance
t for every edge, so our algorithm will obtain N from M in O(k2) iterations.

As required, for every edge (i, j) ∈ N , we have rankϕ(pij) = Ω(n/2k(k − 1)) and
rankϕ(fN ) = Ω(nk/(2k)2k). By the construction of the polynomial and Lemma 2.5, we
have rankϕ(f) ≥ maxM∈M{rankϕ(fM )} = Ω(nk/(2k)2k).

ut

A high rank sum of three ROFs

In [21], Kayal et al. showed that there is a polynomial that can be written as sum of three
ROFs such that any ROABP computing it requires exponential size. The lower bound proof
in [21] is based on the construction of a polynomial using three edge disjoint perfect match-
ings on n vertices.

The construction of this polynomial, as a crucial ingredient, used a 3-regular mildly
explicit family of expander graphs defined in [28]. Let G = (G(q))q>0, prime be a family of
3 regular expander graphs where a vertex x in G(q) is connected to x + 1, x − 1 and x−1

where all of the operations are modulo q. When q is clear from the context, we denote G(q)
by G.

The double cover of G is the bipartite graph G′ = (V1, V2, E
′) where V1, V2 are copies

of V and for all pair of vertices {u, v} from V such that u ∈ V1, v ∈ V2 and u ∈ V2, v ∈ V1,
it holds that (u, v) ∈ E′ ⇐⇒ (u, v) ∈ E. As no vertex in G has a self-loop, any edge of
the form (u, u) is not present in E, and hence, E′.

Figure 1 gives an example of a double cover G′ of a graph G = (V,E) where V =
{1, . . . , 8} and E = {(1, 2), (3, 4), (5, 6), (7, 8)}.

It is known from [28] that the set of edges in E′ can be viewed as the union of 3 edge
disjoint perfect matchings. In [21], Kayal et al. construct a polynomial for each of these
matchings and the hard polynomial is obtained by taking the sum of these three polynomials.
This polynomial has degree n/2 and therefore is unsuitable in the parameterized context. We
construct a polynomial h from the same graph G′ also based on three edge-disjoint perfect
matchings as in [21], but our polynomial has degree k. Suppose M1∪M2∪M3 = E′ be the
edge-disjoint perfect matchings. We divide the n/2 edges in each of the Mi into k/2 bags
of n/k edges each. Though the hardness of the polynomial follows for an arbitrary division
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Figure 1. Example construction of double cover G′ from G = (V,E), where V = {1, . . . , 8}.

of edges in Mi into bags, we consider a special kind of partition, which will be useful in the
proof of Theorem 4.2.

Consider the subgraph induced by M1 ∪M2 which is a union of vertex disjoint cycles
C1, . . . , C`, ` ≥ 1. In fact, C1, . . . , C` is a cycle cover of G′. Since M1 and M2 are dis-
joint, minimum length of Ci is at least four. For 1 ≤ i ≤ `, we write the cycle Ci =
(pi, xi,1, . . . , xi,r, pi) where r ≥ 3 and (pi, xi,1), (xi,1, xi,2), . . . , (xi,r−1, xi,r), (xi,r, pi) are
the edges in it. The variable pi is called the pivot of Ci. Pivots for the cycles are cho-
sen so that M3 has no matching between any two pivots. For 1 ≤ i ≤ `, the cycle
Ci induces a natural ordering on the variables involved in it, i.e., pi, xi,1, . . . , xi,r. We
fix an ordering of the cycles C1, . . . , C` induced by the ascending order of the indices of
their pivots. For i ∈ {1, 2}, let Bi1 be the first n/2k edges from Mi that appear ac-
cording to the order induced by the cycles C1, . . . , C`. To be more concrete, suppose
C1 = (p1, x1,1, . . . , x1,r1 , p1) and C2 = (p2, x2,1, . . . , x2,r1 , p2). If r1 > n/k − 1, B1,1

contains the edges (p1, x1,1), (x1,3, x1,4), (x1,5, x1,6), . . . , (x1,n/k−1, x1,n/k). If r1 < n/k
then, B1,1 consist of all edges of M1 in C1 and then edges from C2C3 etc., such that total
number of edges is n/2k. Now Bi2 is the next n/k edges from Mi. Repeating this, we get
the partition Mi = Bi1 ∪Bi2 ∪ · · · ∪Bik/2. Choose a partition M3 = B31 ∪ . . . ∪B3k/2 of
the edges of M3 such that the pivots appear in the order given by the cycle cover C1, . . . , C`.
Now, each edge (u, v) ∈ Mi corresponds to the monomial xuxv. For every bag Bij , we de-
fine the bilinear term hij =

∑
(u,v)∈Bij

xuxv and the polynomial hi corresponding to each
Mi is defined as hi =

∏
j∈[ k

2
] hij .



The final polynomial is the following:

h(x1, . . . , xn) =
∑
i∈[3]

wi

∏
j∈[ k

2
]

∑
(u,v)∈Bij

xuxv

 , (2)

where w1, w2 and w3 are formal variables, wi corresponding to the matching Mi. To
analyse the hardness of this polynomial, we need the notion of bichromatic edges.

Definition 3.5. For a partition ϕ : X → Y ∪ Z, and an edge (u, v) ∈ Mi, (u, v) is said to
be bichromatic with respect to ϕ if either ϕ(xu) ∈ Y and ϕ(xv) ∈ Z, or ϕ(xu) ∈ Z and
ϕ(xv) ∈ Y .

For a set of edges A over {x1, . . . , xn} let beϕ(A) be the number edges in A that are
bichromatic with respect to ϕ. For a graph G = (V,E), let beϕ(G) = beϕ(E).

Let X be the variable set corresponding to vertices in G, i.e., X = {x1, . . . , xn}. Fixing
an equi-partition ϕ, we will view it as a coloring of variables inX in the color represented by
Y or Z. The degree-2 monomials in the polynomial can now be viewed as a monochromatic
edge if both end-points are of the same color, and a bichromatic edge otherwise. As seen
before, in a particular term hij , each bichromatic edge contributes 1 towards the rank of the
partial derivative matrix of hij and all monochromatic edges together contribute a maximum
of 2. This is the idea we will use to prove the desired property of the polynomial h in the
following theorem.

Theorem 3.6. Let h be the polynomial defined in Equation 2. Then there is a constant
c > 23+20ε

114 for a fixed ε > 0 such that for every equi-partition ϕ : X → Y ∪ Z, over the
rational function field F(w1, w2, w3), we have

rankϕ(h) ≥
(n
k

)ck
.

Proof:
Let us fix an arbitrary partition ϕ : X → Y ∪ Z. By the expander property of G (see [21]),
the number of edges from Y to Z is lower bounded by E(Y,Z) ≥ (2+10−4)

2 · |Y | = (1+ε)n
2

for a fixed ε > 0.(See [21] for details.)
Now, each perfect matching has n

2 edges, so the graph has 3n
2 edges. By averaging, we

get that there is a matching Mi, 1 ≤ i ≤ 3 such that the number of bichromatic edges in Mi,

beϕ(Mi) ≥
(1 + ε)n

6
. (3)

Without loss of generality, suppose i = 1. Let h1 =
∏
j∈[ k

2
]

∑
(u,v)∈B1j

xuxv, i.e., the
polynomial corresponding to M1. We need to get an upper bound for beϕ(M1).

Let us assume that the bichromatic edges in M1 are distributed evenly across all sets in
the partitionB11, . . . , B1k/2. Then, for every bagB1j we will have beϕ(B1j) =

(
(1+ε)n

6 · 2
k

)
=



(1+ε)n
3k , which will be the same as rankϕ(h1j) as each bichromatic edge contributes 1 towards

the rank. By sub-multiplicativity, it follows that rankϕ(h1) ≥
(

(1+ε)n
3k

)k/2
.

However, this may not hold in general for M1, because the bichromatic edges can po-
tentially be distributed in exponential number of ways across the bags B1j . Therefore, it is
possible that for some values of j, the bags B1j contain only monochromatic edges. This
will reduce the exponent of n in the expression of the rank. Thus, this argument is not the
right way to analyse the rank of the polynomial.

Nevertheless, we get a smaller but good enough bound by a simple averaging argument.
Let beϕ(Mi) =

∑
j∈[ k

2
] beϕ(Bij) and letα denote the number of bags with sufficient number

of bichromatic edges, i.e., α = |{j | beϕ(B1,j) ≥ n/20k}|. Then, for (k/2 − α) bags of
M1, the maximum number of bichromatic edges is upper bounded by (k/2− α)n/20k, and
the upper bound for each of the α remaining bags is the total number of edges in each bag,
n/k. So, we upper bound beϕ(M1) as follows:

beϕ(M1) ≤ αn
k

+ (k/2− α)
n

20k

=⇒ beϕ(M1) ≤ αn
k
· 19

20
+

n

40
. (4)

Finally, using the lower bound given by (3) with the upper bound in (4), we have

(1 + ε)n

6
≤ αn

k
· 19

20
+ k · n

40k

=⇒ α ≥ (23 + 20ε)

114
k.

Now rankϕ(
∑

(u,v)∈B1j
xuxv) = beϕ(B1j) as we have already explained. Hence we

have rankϕ(h1) ≥ ( n
20k )α =

(
n
k

)ck for some constant c > (23+20ε)
114 as required. On setting

w1 = 1 and w2, w3 to zero, we obtain the same rank lower bound for h.
ut

4. Lower bounds

In this section we prove parameterized lower bounds for some special classes of syntactic
multilinear ABPs computing the polynomial families defined in Section 3. In particular, we
prove lower bounds for the size of ROABPs, strict interval ABPs and a sum of restricted
class of ROPs for computing one or both of the hard polynomials we have defined in the
previous section.

The general strategy of the lower bound is to obtain an equi-partition ϕ of the variables
for which any polynomial computed by our chosen model attains the largest rank and then
comparing this upper bound, which is usually in terms of the size s of the ABP, with the rank
lower bound on the hard polynomials.



4.1. ROABP

In this section we prove a parameterized lower bound for the size of any ROABP computing
the polynomials defined in Section 3. The lower bound argument follows from the fact that
for any polynomial computed by an ROABP P , there exists an equi-partition ϕ of variables
such that rankϕ(P ) is bounded by the size of the ROABP [27].

Theorem 4.1. A ROABP P computing the polynomial family f = (fn,2k) requires size

S = Ω(nk/(2k)2k).

Proof:
Let P be an ROABP of size S computing f . Let the layers in P be L0, L1, . . . , Ln, such that
L0 contains only the source node s and Ln contains only the terminal node t. We consider
the order in which the variables are read from left to right in the ROABP as x1, x2, . . . , xn.

We can define the equi-partition ϕ : X → Y ∪ Z given the above order, such that,

ϕ(xi) =

{
yi, if i ≤ n/2,
zi−n/2 otherwise.

Let us consider the n/2th layer. By definition of P , the incoming edges to any layer Li
in P are labeled with a linear polynomial in xi. At any node j in Ln/2, the paths from s to
j are products of linear terms in variables v, ϕ(v) ∈ Y . The sum of these paths, which is
computed at j, can be seen as a sub-program [s, vj ]P . Similarly, the sum of the paths from j
to t, computed at t, can be denoted by the sub-program [vj , t]P . Then, we can represent f as

f(x1, . . . , xn) =
∑

j∈Ln/2

[s, vj ]P · [vj , t]P .

By definition of ϕ, for all vj ∈ Ln/2, every product [s, vj ]P ·[vj , t]P contributes 1 towards
the rank of P . This is because every row-indexing monomial inMPϕ corresponding to paths
from s to j has non-zero entries corresponding to the same column-indexing monomials,
corresponding to paths from j to t. So by Gaussian elimination, the product of sub-programs
[s, vj ]P and [vj , t] contribute at most 1 to rankϕ(P ). The number of such products in the
expression for f is at most |Ln/2|, the number of nodes in the (n/2)th layer.

Then, rankϕ(f) ≤ |Ln/2| ≤ S, S being a loose upper bound on the number of nodes
in the n/2th layer. By Theorem 3.4, rankϕ(f) = Ω(nk/(2k)2k). Therefore we have S =
Ω(nk/(2k)2k) as required. ut

Combining Theorem 4.1 with Theorem 3.6 we get:

Theorem 4.2. An ROABP computing the family of polynomials h defined in Section 3 re-
quires size nΩ(k).



Proof:
From the proof of Theorem 4.1, we see that for any size S ROABP computing the polynomial
h, the equi-partition ϕ that maps the first n/2 variables to Y and the rest to Z ensures that
rankϕ(h) ≤ S. Then by Theorem 3.6, we have S = nΩ(k) as required. ut

4.2. Separation Between Read-2 and Read-Once Oblivious ABPs

In this section, we show the power of reads of a variable in an oblivious ABP. To be clear,
our family of hard polynomials h can be computed efficiently by oblivious ABPs if we allow
two reads instead of one for every variable.

Theorem 4.3. The family of polynomials h defined in Section 3 can be computed by read-2
oblivious ABPs of size nO(1).

Proof:
According to the construction of h, we have three edge-disjoint perfect matchings M1,M2

and M3. We will try to construct an ABP computing the polynomial f with as less number
of reads as possible for each variable. We show that two reads per variable is enough.

Firstly, we construct a read-2 oblivious ABP P computing h1, h2 as defined in Section 3
and then add edges to P to compute h3 without having to increase the number of layers
in which a variable is read more than 2. Let C1, . . . , C` be the cycle cover given by the
matchings M1 and M2 as used in the definition of h. Let us consider variables in the order
in which they appear in each cycle in the cycle cover C1, . . . , C`. We first construct the
polynomials corresponding to the bags B11 and B21. This can be done by one scan of the
variables corresponding to C1, . . . , Ci1 where Ci1 is the last cycle intersecting the bags B11

or B21. Now we proceed to bags B12 and B22. Continuing this way, we obtain an ABP P
computing the polynomials h1 and h2 such that all variables except the pivots are read once.
The pivot variables will however be read twice. Note that size of P is O(n2).

Example: Figure 2 will demonstrate the construction of the read-2 oblivious ABP P for
M1,M2 i.e w1h1 +w2h2 where the set of vertices V = {1, 2, . . . , 8} and the perfect match-
ings M1 = {(1, 2), (3, 4), (5, 6), (7, 8)} and M2 = {(1, 4), (2, 3), (6, 7), (5, 8)}. Hence,
they form a cycle cover C1, C2 where C1 = (1, 2, 3, 4, 1) , C2 = (7, 8, 5, 6, 7). Thus x1, x7

are pivot variables and are read twice, while the other variables are read once. The unlabeled
edges can be assumed to be labeled by 1.

Now, we considerM3. Recall that the blocksB31, . . . , B3n/2k respect the order on pivots
given by C1, . . . , C`. Now we compute the polynomials for each of the blocks in that order.
Since M3 has no edge between the pivots, we can build the polynomial for for B31 such that
all pivots in B31 are aligned with their first read in P . For example, for the monomial pxi
in h31, we add edges to P in the following fashion. Suppose L is the layer in P where the
variable p is being red for the first time. Now we compute pxi starting from layer L, first
reading p and then the variable xi in the next layer. Recall that P reads xi only once and
hence this read can be done anywhere in the program. One the the polynomial for block
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Figure 2. Parameterized read-2 OABP constructed from M1,M2
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Figure 3. The parameterized read-2 OABP after including the sub-program for M3

B31 is constructed, we proceed to compute h32 and so on. Throughout the construction,
we only need to care about pivot variables in h3 and align them suitably so that the number
of layers that read the pivot variable is limited to two. Monomials that do not involve any
pivot variable can be computed freely as needed so that every variable appears in at most
two layers of the resulting program.

Figure 3 below demonstrates the complete construction of a parameterized read-2 obliv-
ious ABP computing the polynomial h when the sub-program corresponding to the third
matching M3 = {(1, 3), (2, 6), (4, 8), (5, 7)} is incorporated by our algorithm into the con-
struction previously shown in Figure 2.

ut

From the above theorem, the separation between read-once and read-twice oblivious
ABP is clear.

Corollary 4.4. There is a parameterized polynomial family computable by polynomial size
read-2 ABPs such that any ROABP computing it has size nΩ(k) where k is the parameter.



Proof:
Follows from Theorems 4.2 and 4.3. ut

4.3. Strict interval ABPs

In this section we prove a parameterized lower bound against the polynomial family f de-
fined in Section 3 for the size of strict interval ABPs. Without loss of generality, assume that
π is the identity permutation. Let P be a π strict-interval ABP computing the polynomial f .

As a crucial ingredient in the lower bound proof, we show that using the standard divide
and conquer approach, a strict-interval ABP can be transformed into a depth four circuit
with nO(

√
k) blow up in the size. To begin with, we need a simple depth reduction for strict

interval ABPs computing degree k polynomials. For that purpose, we first homogenize the
strict-interval ABP:

Lemma 4.5. Let P be a syntactic multilinear ABP of size S computing a homogeneous
degree k polynomial g on n variables. Then there is a syntactic multilinear ABP P ′ of depth
k + 1 and size O(S · k) computing g such that:

1. Every node in the ith layer of P ′ computes a homogeneous degree i polynomial.

2. If P is strict interval then so is P ′.

Proof:
Without loss of generality, we assume that P is homogeneous, i.e., for every node v in P ,
the polynomial [s, v]P is homogeneous, since homogenization of an ABP, first illustrated
by [27], does not blow up the size of the ABP beyond a factor of the degree k. For every
node v in P , let deg(v) be the degree of the polynomial [s, v]P . We give a layer by layer
construction of the program P ′. Let Li be the set of all nodes v in P such that deg(v) = i,
i.e., Li = {v | deg(v) = i}. The program P ′ has k+ 1 layers in addition to s and t, with ith

layer consisting of nodes Li. The edges are added inductively as follows:
Base Case: Every node in L0 computes a degree 0 polynomial, i.e., a constant. Add

suitable edges from s to nodes in L0.
Inductive Step: Suppose the branching program has been constructed upto layer Li−1 for

i ≥ 1. We add incoming edges to Li as follows. For every node v ∈ Li, with an incoming
edge (u, v) in P , we have two possibilities,

Case 1 u ∈ Li−1. Then, we add the edge (u, v) to P ′ with the same label as label(u, v).

Case 2 u ∈ Li. In this case, we wait till all the incoming edges of u are processed. Then, for
every incoming edge (u′, u) in P ′ we add the edge (u′, v) with the label label(u′, u) ·
label(u, v).

There is a one-to-one correspondence between the nodes of P and that of P ′, since we
have only moved nodes of P of degree< i from Li to a suitable layer preceding Li, ensuring
that nodes j in Li (in P ′) compute only sub-programs [s, vj ]P of degree exactly i.



As the polynomial is of degree k, every node in P will result in the creation of at most k
new nodes. Hence P ′ computes the same polynomial as P and the properties 1 and 2 hold
as required. ut

Using Lemma 4.5 we obtain the desired parameterized version of depth reduction to
depth four circuits:

Lemma 4.6. Let g(x1, . . . , xn) be a multilinear polynomial of degree k computed by a syn-
tactic multilinear branching program P of size S. Then

g(x1, . . . , xn) =
T∑
i=1

√
k∏

j=1

fi,j (5)

for some T = SO(
√
k) and fi,j is a degree

√
k multilinear polynomial computed by a sub-

program of P for i ∈ {1, . . . , T}, j ∈ {1, . . . ,
√
k}.

Proof:
The construction follows from a simple divide and conquer subdivision of the program. By
Lemma 4.5, we assume that P is homogeneous and has depth k + 1.

LetLi be the set of nodes at layer i of the program P , for 0 ≤ i ≤ k+1. We divide P into
blocks of

√
k layers. Each block is a collection of sub-programs between the nodes in the

first and last of the
√
k layers. LetW = L√k×L2

√
k×· · ·×L(

√
k−1)

√
k be the total number

of ways in which all these blocks can be aligned with each other. The final polynomial is
sum, over all possible alignments, of the product of a sequence of

√
k sub-programs, one

from each block:

g(x1, . . . , xn) =
∑

(i1,...,i√k−1)∈W

[s, i1]P ·

√
k−2∏
m=1

[im, im+1]P · [i√k−1, t]P (6)

Every sub-program is a sum of products of linear polynomials. Hence, looking at the ex-
pression, we note that it can be computed by a depth-4 circuit. Considering the number of
nodes in each layer to be upper bounded by S, we have |W | = T = SO(

√
k). Thus we are

able to expand g as in the statement of the Lemma. ut

Now to prove the claimed lower bound for the size of strict interval ABPs, all we need
is given a polynomial f computed by an strict interval ABP of size S, an equi-partition ϕ of
X such that rankϕ(f) << nk.

Lemma 4.7. Let f be a polynomial computed by a strict interval ABP of size S. Then there
is a partition ϕ such that rankϕ(f) ≤ SO(

√
k)n
√
k.



Proof:
Without loss of generality, assume that P is a strict interval ABP with respect to the identity
permutation. Let ϕmid : X → Y ∪ Z be a suitable equi-partition such that,

ϕmid(xi) =

{
yi, if i ≤ n/2,
zi−n/2 otherwise.

We consider the representation for f as in (6). Then for every 1 ≤ i ≤ T , for all
but one m, we have either ϕmid(var([im, im+1])) ⊆ Y or ϕmid(var([im, im+1])) ⊆ Z. Now,
considering (5), rankϕ(fij) ≤ n as there are n possibilities for a variable in var([im, im+1]P )
which is mapped to a different partition by ϕmid than the other variables, such that the sub-
program [im, im+1]P contributes a rank of 1.

Therefore, rankϕmid
([s, i1]P ·

∏√k−2
m=1 [im, im+1]P · [i√k−1, t]P ) ≤ n

√
k, for every ij ∈

Lj
√
k.

By sub-additivity of rankϕ, we have rankϕ(f) ≤ SO(
√
k)n
√
k for ϕ = ϕmid. ut

The required lower bound is immediate now.

Corollary 4.8. Any strict-interval ABP computing the polynomial f has size nΩ(
√
k).

Proof:
Follows from Theorem 3.4 and Lemma 4.7. ut

4.4. Rank bound for ROPs by Graph representation

The reader might be tempted to believe that the lower bound arguments in the preceding sec-
tions might be applicable to more general models such as sum of ROFs and sum of ROABPs
or even multilinear formulas. However, as we have seen in Section 3, there is a sum of three
ROFs that has high rank under every partition. Thus our approach using rankϕ as a complex-
ity measure is unlikely to yield lower bounds for even sum of ROFs, which is in contrast to
the classical setting, where exponential lower bounds against models such as sum of ROFs
and sum of ROABPs follow easily.

In this section, we develop a new method of analyzing rank of degree k polynomials
computed by ROFs. We look at the order in which variables appear in the in-order traversal
of an ROF. Thus we read the variables in the sum of ROFs with a restricted ordering.

Let p ∈ F[X] be the polynomial computed by a ROF Φ. We want to construct a graph
Gp = (X,Ep) corresponding to p so that rankϕ(p) can be related to certain parameters of
the graph. For this, we add edges or a sequence of edges to the graph according to the type
of polynomial each gate computes. We define some types of gates in the formula as follows.

Definition 4.9. (Types of gates in a ROF) Let Φ be a ROF. A gate v in Φ is said to be
a maximal-degree-two gate if v computes a degree two polynomial, and the parent of v
computes a polynomial whose degree is strictly greater than two.



A gate v is said to be a maximal-degree-one gate if v computes a linear form and the
parent of v computes a polynomial of degree strictly greater than one.

A gate v at depth 1 is said to be a high degree gate if the degree of the polynomial
computed at v is strictly greater than two.

Let V2 denote the set of all maximal-degree-two gates in Φ, V1 denote the set of all
maximal-degree-one gates and V0 denote the set of all high degree gates in Φ at depth one.
Let atomic(Φ) = V0 ∪ V1 ∪ V2. The following is a straightforward observation:

Observation 1. Let Φ be an ROF and v be a maximal-degree-two gate in Φ. Then the
polynomial computed by Φv is of the form Φv =

∑s
i=1 `i1`i2 , where `ij 1 ≤ i ≤ s,

j ∈ {1, 2} are variable disjoint linear forms for some s > 0 such that each of the `ij is
dependent on at least one variable.

Defining paths and constructing Gp

For a linear form ` =
∑r

j=1 αijxij , let path(`) be the simple undirected path comprised of
edges (xi1 , xi2), (xi2 , xi3), . . . , (xir−1 , xir).

In the case when r = 1, path(`) is just single vertex. Similarly, for a subset S ⊆ X
of variables, let path(S) denote the path constituted by the edges (xi1 , xi2), (xi2 , xi3), . . . ,
(xir−1 , xir) where S = {xi1 , . . . , xir}, i1 < i2 < . . . < ir.

For two variable disjoint linear forms ` and `′, let path(`, `′) be the path obtained by
connecting the last vertex in path(`) to the first vertex of path(`′) by a new edge.

Now, we define a graph Gp = (X,Ep) where vertices correspond to variables xu ∈ X
and the set of edges Ep defined as follows.

For each v ∈ atomic(Φ) we add the following edges to Ep:

Case 1 Φv =
∑r

i=1 `i1`i2 for some r > 0 add path(`i1 , `i2) to Gp for every 1 ≤ i ≤ t.

Case 2 Φv =
∏
i∈S xi or Φv =

∑
i∈S cixi, where S ⊆ X , cis are constants from F, add

path(S) to Gp.

It may be noted that the graph Gp is not unique as it depends on the given minimal ROF
Φ computing f . Now that we have an underlying graph, we view the equi-partition ϕ on
the variables X of the polynomial as a coloring, and analyse the rank of the polynomial
computed by Φ using the measure of number of bichromatic edges, as defined in Section 3.

Lower bound using Gp

In the following, we show that for a given partition ϕ, we bound the rankϕ(p) in terms of the
number of bichromatic edges beϕ(Gp).

Theorem 4.10. Let p ∈ F[x1, . . . , xn] be a multilinear polynomial of degree k computed by
a ROF Φ. Then, for any equi-partition ϕ : X → Y ∪ Z, rankϕ(p) ≤ (4beϕ(Gp))

k
2 .



Proof:
The proof is by induction on the structure of Φ. The base case is when the root gate of Φ
is in atomic(Φ). We prove the bound for all the three kinds of gates in atomic(Φ) and the
inductive argument follows.

Consider a gate v ∈ atomic(Φ).

Case 1 Φv =
∑

(i,j)∈S xixj . If ϕ(xi), ϕ(xj) are not in the same partition, then each mono-
mial xixj contributes 1 towards rankϕ(p). At the same time, the edge (xi, xj) added
to Ep is bichromatic, so each monomial contributes 1 towards the measure beϕ(Gp)
as well.

Case 2 Φv =
∑

(a,b)∈T `a`b. If, for some xi, xj ∈ var(`a), ϕ(xi), ϕ(xj) are in different
partitions, then the linear form `a contributes 2 towards rankϕ(`a). If the same holds
true for `b, then `a`b would together contribute 4 towards rankϕ(p) and ≥ 2 towards
the measure beϕ(Gp).

Case 3 Φv =
∑

i∈W1
cixi or Φv =

∏
i∈W2

xi for some W1,W2 ⊆ X . The first case has
been considered already. For the second case, if ∃xa, xb ∈W2 such that ϕ(xa), ϕ(xb)
are in different partitions, the polynomial computed by the gate v will contribute a 1
towards rankϕ(p) and at least 1 towards beϕ(Gp), otherwise it contributes 0 towards
both measures.

Thus we have verified that the statement is true when the root gate v of Φ is contained
in atomic(Φ). Suppose p = p1 op p2 for op ∈ {+,×} where p1 and p2 are variable disjoint

and are computed by ROFs. By induction hypothesis, rankϕ(pj) ≤ (4beϕ(Gpj ))
kj
2 where

kj = deg(fj). As beϕ(Gp) = beϕ(Gp1) + beϕ(Gp2) and k = k1 + k2 (op = ×) or
k = max{k1, k2} (op = +) we have, rankϕ(f) ≤ (4beϕ(Gp))

k
2 as required. ut

Recall that the bisection of an undirected graph G = (V,E) is a set S ⊆ V such
that |S| = |V |/2. The size of a bisection S is the number of edges across S and S, i.e.,
|{(u, v) | (u, v) ∈ E, u ∈ S, v /∈ S}|. The following is an immediate corollary to Theo-
rem 4.10:

Theorem 4.11. Let G be a graph on n vertices such that there is a bisection of G of size
n1−ε. Suppose p1, . . . , ps be ROFs such that Gpi is a sub-graph of G. Then, if f = p1 +
· · ·+ pS we have S = (nΩ(k)/t(k)), where t is a computable function on k.

Proof:
Let C = (S, S) be the bisecting cut and size(C) denote the number of edges across the cut.
We fix an equi-partition ϕ : X → Y ∪ Z as follows:

ϕ(xi) ∈

{
Y, if i ∈ S,
Z, otherwise.



Then by Theorem 4.10, rankϕ(pi) ≤ (4beϕ(Gpi))
k
2 . SinceGpi is a sub-graph ofG, we have

beϕ(Gp)) ≤ size(C) ≤ n1−ε. Therefore, rankϕ(pi) ≤ Ok(n(1−ε)k/2). By sub-additivity, we
have rankϕ(f) ≤ SOk(n(1−ε)k/2) where Ok is upto a factor that depends only on a function
of k. By Theorem 3.4, we get S = Ω(nεk/2). ut

Conclusions

Our results demonstrate the challenges in translating classical arithmetic circuit lower bounds
to the parameterized setting, when the degree of the polynomial is the parameter. We get a
full rank polynomial that can be computed by depth four arithmetic circuits of fpt size,
whereas in the classical setting, full rank polynomials cannot be computed by multilinear
formulas of polynomial size [17].

This makes the task of proving parameterized lower bounds for algebraic computation
much more challenging task. Given the application of polynomials, whose degree is bound
by a parameter, in the design of efficient parameterized algorithms for many counting prob-
lems, we believe that this is a worthy research direction to pursue.

Further, we believe that our results are an indication that study of parameterized com-
plexity of polynomials with degree as the parameter could possibly shed more light on the
use of algebraic techniques in parameterized algorithms.
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