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Abstract. We consider the problem of obtaining parameterized lower bounds
for the size of arithmetic circuits computing polynomials with the degree of the
polynomial as the parameter. In particular, we consider the following special
classes of multilinear algebraic branching programs: 1) Read Once Oblivious Al-
gebraic Branching Programs (ROABPs); 2) Strict interval branching programs;
and 3) Sum of read once formulas with restricted ordering.
We obtain parameterized lower bounds (i.e., nΩ(t(k)) lower bound for some func-
tion t of k) on the size of the above models computing a multilinear polynomial
that can be computed by a depth four circuit of size g(k)nO(1) for some com-
putable function g.
Our proof is an adaptation of the existing techniques to the parameterized set-
ting. The main challenge we address is the construction of hard parameterized
polynomials. In fact, we show that there are polynomials computed by depth
four circuits of small size (in the parameterized sense), but have high rank of the
partial derivative matrix.

1 Introduction

Parameterized Complexity is a multi-dimensional study of computational problems which
views the complexity of a problem in terms of both the input size and an additional
parameter. This leads to a finer classification of computational problems, and a relaxed
notion of tractability, given by a f(k)poly(n) bound on the running time for decision
problems with parameter k, known as fixed-parameter tractability or FPT. This was first
studied by Downey and Fellows in their seminal work [8] where they developed param-
eterized complexity theory, and paved the way for extensive study of parameterized
algorithms. The notion of intractability in parameterized complexity is captured by the
W-hierarchy of classes [8].

Algebraic Complexity Theory is concerned with complexity of computing polynomi-
als using elementary arithmetic operations such as addition and multiplication over an
underlying ring or field. Valiant [25] formalized the notions of algebraic complexity the-
ory and posed proving lower bound on the size of arithmetic circuits computing explicit
polynomials as the primary challenge for the area. Following Valiant’s work, there has
been intense research efforts in the past four decades to prove lower bounds on the size of
special classes of arithmetic circuits such as constant depth circuits, multilinear formula
and non-commutative models. (See [23, 24] for a survey.) Despite several techniques, the
best known size lower bound for general arithmetic circuit is only super linear [3].

Given the lack of progress towards proving lower bounds on arithmetic circuits and
the success of parameterized complexity theory in refining the notion of tractability, it
is worthwhile exploring the feasibility of parameterizations of polynomials. Engels [9]
initiated development of a parameterized theory for algebraic complexity classes and
suggested suitable notions of tractability and reductions. The attempt in [9] was more
at obtaining a complexity classification in the form of complete problems for a generic
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parameter. Müller [18] was the first to introduce parameterizations on polynomials in the
context of designing parameterized algorithms problems on polynomials such as testing
for identity of polynomials given as arithmetic circuits (ACIT). ACIT is one of the funda-
mental problems in algebraic complexity theory and has close connections to the circuit
lower bound problem [15]. Müller studied parameters such as the number of variables
in the polynomial, multiplication depth of the circuit computing the polynomial etc
and obtained efficient randomized parameterized algorithms for ACIT. It may be noted
that ACIT is non-trivial with these parameters since a polynomial can potentially have
nΩ(k) monomials where k is any of these parameters. In [6] Chauhan and Rao studied
ACIT with degree as the parameter and obtained a randomness efficient parameterized
algorithm for ACIT. It may be noted that polynomials with the degree bounded by the
parameter are widely used in developing efficient parameterized algorithms [4, 1, 10] and
in expressing properties of graphs [5]. For example, in [10] the polynomial representing
homomorphisms between two graphs has indeed degree equal to the parameter, i.e. the
number of vertices in the pattern graph. It may be noted that efficient computation of
the polynomial defined in [10] by arithmetic formulas leads to space-efficient algorithms
for detecting homomorphisms between graphs of bounded treewidth. In [12] the authors
along with Prakash studied polynomials parameterized by the degree and showed limi-
tations of an existing approach in obtaining deterministic parameterized algorithms for
ACIT. In this article, we explore the possibility of obtaining parameterized lower bounds
for the size of arithmetic circuits with degree as the parameter.

Let n be the number of variables and k be a parameter (e.g., degree of the polyno-
mial). Throughout the article, t(k) denotes a computable function that depends only on

the parameter, e.g., t(k) = 2k, t(k) = 22
k

, t(k) =
√
k etc. Any circuit is said to be of fpt

size if the size of the circuit is bounded by t(k)nO(1) for some computable t. By a pa-
rameterized lower bound, we mean a lower bound of the form nΩ(t(k)) for a computable
function t. It may be noted that the task of proving parameterized lower bounds is more
challenging than classical lower bounds. In the case of degree as a parameter, most of the

existing lower bounds of the form nΩ(
√
k)(e.g., [13, 11, 17]) for constant depth circuits

are already parameterized lower bounds. In contrast, the lower bounds for other special
classes such as multilinear formula [21, 20] do not translate easily.

To understand the primary challenge in translating the results in [20, 21] to the pa-
rameterized setting we need to delve a bit on the techniques used for proving lower
bounds. Raz [21] used the notion of partial derivative matrix under a partition of vari-
ables with equal parts (See Section 2 for a detailed definition) as a measure of complexity.
The idea is to show existence of such partitions where polynomials computed by a mul-
tilinear formula of small size will have small rank for the partial derivative matrix. Then
for any polynomial that has large rank under every partition, a natural lower bound on
the size follows. However, the analysis done in [21] or subsequent works [22, 20, 7] do
not carry forward when parameterized by the degree. Similarly the construction of the
polynomial family with high rank partial derivative matrix in [21] and subsequent works
do not generalize to the parameterized setting.

In this article we address the challenge of translating lower bounds for the size of
multilinear restrictions of arithmetic circuits to parameterized lower bounds.

Results Our primary result is a parameterized family of polynomials (Theorem 1) such
that under every equal sized bi-partition of the variables, the rank of the partial deriva-
tive matrix is the maximum possible up to a factor that depends only on the parameter.
Further, we demonstrate a simple parameterized family of polynomials that can be writ-
ten as a sum of three read once formulas such that under any partition of the variables
into two equal parts, the rank of the partial derivative matrix is high. (Theorem 2) As
a consequence, we obtain parameterized lower bounds for the size of an ROABP (The-
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orem 3), a strict-interval ABP (Corollary 1) and sum of ROPs with restricted ordering
of variables (Theorem 6) against the constructed hard polynomial.

Finally, we obtain a parameterized version of the separation between read-3 ABPs
and ROABPs given in [16] (Theorem 4). This is done by constructing a parameterized
variant of the hard polynomial given in [16] (Theorem 2).

2 Preliminaries

In this section we give all basic definitions related to arithmetic circuit. Let F denote a
field. Most of the arguments in this article work for any F. Let X = {x1, . . . , xn} denote
the set of variables.

An arithmetic circuit is a model for computing polynomials using the basic operations
+ and ×. An arithmetic circuit C is a directed acyclic graph, where every node (called
a gate) has in-degree two or zero. The gates of in-degree zero are called input gates and
are labeled from X ∪ F, where X = {x1, . . . , xn} is the set of variables called inputs
and F is the underlying field. Internal gates of C are labeled by either + or ×. Gates of
out-degree zero are called output gates. Typically an arithmetic circuit will have a single
output gate. Every gate in the circuit C is associated with a unique polynomial in F[X].
The polynomial computed by the circuit is the polynomial associated at its output gate.

The complexity of arithmetic circuits is measured in terms of size and depth. Size
is defined as the number of + and × operations in the circuit. Depth of the circuit
represents the length of the longest path from the output node (root) to an input node
(leaf) of the circuit. Since a constant depth arithmetic circuit where fan-in of every gate
is bounded by 2 (or even a constant) cannot even read all of the inputs, we assume
unbounded fan-in in the case of constant depth circuits. Arithmetic circuits of constant
depth have received wide attention [23].

An arithmetic circuit C is said to be syntactic multilinear if for every product gate
f = g × h in C, the set of variables that appear under the sub-circuit rooted at g is
disjoint from that of h. Naturally, a syntactic multilinear circuits computes a multilinear
polynomial.

An arithmetic circuit where the underlying graph is a tree is known as arithmetic
formula. An arithmetic formula is said to be read once (ROF for short) if every variable
appears as a label in at most one leaf. Polynomials computed by ROFs are known as
Read-once polynomials (ROPs for short). It may also be noted that ROFs are a proper
subclass of syntactic multilinear formulas.

An algebraic branching program (ABP) P is a directed acyclic graph with a source
vertex s of in-degree 0 and a sink vertex t of out-degree 0. The rest of the vertices can be
divided into layers L1, L2, . . . , Lr−1 between s and t, s being the only vertex in L0, the
first layer, and t being the only vertex in the last layer `r. Edges in P are between vertices
of consecutive layers. Every edge e is labelled by either a constant from F or a variable
from X. For a directed path ρ in P , let w(ρ) denote the product of edge labels in ρ. For
any pair of nodes u, v in P let [u, v]P denote the polynomial

∑
ρ is a u→v path w(ρ). The

polynomial computed by P is [s, t]P . The size of an ABP is the total number of nodes
and edges in it and the depth of an ABP is the total number of layers in it excluding the
layers containing s and t. Read-once ABPs are such that every input variable is read at
most once along any path from s to t. Read-once Oblivious ABPs (ROABPs) are such
that input variables are read at most once, in a fixed order, along any path from s to t,
and any variable occur as a label in at most one layer of the program.

Let π be a permutation of the variables. An interval in π is a set of the form
{π(i), π(i + 1), . . . , π(j)} for some i < j. Arvind and Raja [2] studied a restriction
of multilinear ABPs called as interval ABPs where every node in the ABP computes a
polynomial whose variable set forms an interval in {1, . . . , n}. In this article, we consider



4

a restriction of interval ABPs which we call as strict interval ABPs. A syntactically
multilinear ABP P is said to be a π strict interval ABP, if for any pair of nodes (a, b) in
P , the index set Xab of the variables occurring on all paths from a to b is contained in
some π interval Iab in [n] and for any node c the intervals Iab and Ibc are non-overlapping.

For a polynomial p ∈ X, let var(p) denote the set of variables that p is dependent on
and deg(p) denote its degree.

Partial Derivative Matrix of a polynomial Nisan [19] defined the partial deriva-
tive matrix of a polynomial and considered its rank as a complexity measure for non-
commutative polynomials and proved exponential lower bounds for the size of non-
commutative formulas. Raz [21] considered a variant of the partial derivative matrix and
proved super polynomial size lower bounds for multilinear formulas. We describe the par-
tial derivative matrix introduced by Raz [21] in more detail. Let X = {x1, . . . , xn} be the
set of variables where n is even. A partition of X is an injective function ϕ : X → Y ∪Z,
where Y and Z are two disjoint sets of variables. A partition ϕ is said to be an equi-
partition if |Y | = |Z| = n/2. In the remainder of the article, we assume that the number
of variables n is an even number.

Definition 1. [21] Let f ∈ F[x1, . . . , xn] be a polynomial of degree d, ϕ : X → Y ∪ Z
be a partition of the input variables of f . Then the partial derivative matrix of f with
respect to ϕ, denoted by Mfϕ is a 2|Y | × 2|Z| matrix where the rows are indexed by the
set of all multilinear monomials µ in the variables Y , and columns indexed by the set
of all multilinear monomials ν in variables in Z. For monomials µ and ν respectively in
variables Y and Z, the entry Mfϕ(µ, ν) is the coefficient of the monomial µν in f .

For a multilinear polynomial p ∈ F[X] and an equi-partition ϕ, let rankϕ(p) be the rank
of the matrix Mpϕ over F. The following fundamental properties of the rank of a partial
derivative matrix was given by Raz [21].

Lemma 1. [21] Let f1 and f2 be multilinear polynomials. Then rankϕ(f1 + f2) ≤
rankϕ(f1)+rankϕ(f2) and if var(f1)∩var(f2) = ∅ then rankϕ(f1f2) = rankϕ(f1)rankϕ(f2).

Lemma 2. For any equi-partition ϕ : X → Y ∪Z, and any multilinear polynomial p of
degree k, we have rankϕ(p) ≤ (k/2 + 1)

(
n/2
k/2

)
.

3 Construction of hard parameterized polynomials

This section is devoted to the construction of two parameterized polynomial families
f = (fn,2k)k≥0 and h = (h2n,k). The first family is computable by a depth four circuit
of fpt (i.e., t(k)nO(1) for a computable t) size and the second family is a sum of three
ROFs. Further, for any partition ϕ, rankϕ(f) is the maximum possible value up to a
factor that depends only on the parameter and rankϕ(h) is the maximum possible value
up to a constant factor in the exponent.

A full rank polynomial: It may be noted that for a multilinear polynomial g of degree
k in n variables, the maximum possible value of rankϕ(g) over all partitions ϕ is at most

(k/2 + 1)
(
n/2
k/2

)
. Though it is possible to construct polynomials that achieve this bound

under a fixed partition ϕ, it is not immediate if there is a polynomial g computed by
small circuits that is full rank under every equipartition. In the following, we give the
description of a multilinear polynomial of degree k that has rank nk/2/t(k) where t is a
function that depends only on k. We assume that 2k|n. Suppose V1 ∪ · · · ∪ V2k = X be
a partition of the variable set X = {x1, . . . , xn} such that |Vi| = |Vj | for 1 ≤ i < j ≤ 2k.
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For convenience let Vi = {xi,1, . . . , xi,n/2k}, where we assume a natural ordering among
the variables.

Let M be the set of all possible perfect matchings on G = K2k, the complete graph
on 2k vertices. Let ζM for M ∈ M, ωi,j 1 ≤ i < j ≤ n/k be formal variables. Let G
be any extension of F containing {ωi,j} ∪ {ζM | M ∈ M} . We define a parameterized
family of polynomial f = (fn,2k), fn,2k ∈ G[x1, x2, . . . , xn] as follows:

f(x1, x2, . . . , xn) =
∑
M∈M

ζM
∏

(i,j)∼M

(1 + p(Vi ∪ Vj)),

where p is a n/k variate quadratic multilinear polynomial defined as

p(v1, . . . , vn/k) =
∑
k<`

ωk,`vkv`.

Note that fn,2k is a degree 2k polynomial in n variables. When n and k are clear from
the context, we use f to denote fn,2k. Let G = F({ζM |M ∈M} ∪ {ωi,j | 1 ≤ i < j ≤
n/k}), i.e the rational function field of the polynomial ring F[{ζM |M ∈M}∪{ωi,j | 1 ≤
i < j ≤ n/k}]. In the remainder of the section, we argue that the polynomial family
f defined above has almost full rank under every partition ϕ : X → Y ∪ Z, such that
|Y | = |Z| = |X|/2.

Definition 2. Consider a partition function ϕ : X → Y ∪ Z such that |Y | = |Z| and

V ⊆ X. The set V is said to be `-unbalanced with respect to ϕ if |X|2 − |ϕ(X)∩Z| = ` =

|ϕ(X) ∩ Y | − |X|2 .

It may be noted that ` can be positive or negative accordingly as |ϕ(X)∩Y | > |ϕ(X)∩Z|
or otherwise. Our first observation is, even if the set V = Vi ∪ Vj is `-unbalanced for
` < n/4k, i ≤ q ≤ [2k], rankϕ(p(Vi, Vj)) remains large:

Lemma 3. If Vi ∪ Vj is ` unbalanced with respect to a partition ϕ : X → Y ∪ Z, then
rankϕ(p(Vi, Vj)) = Ω(n/2k − |`|).

Proof. Without loss of generality, suppose that ` > 0, Vi ∪ Vj = {v1, . . . , vn/k} and

ϕ(vi) =

{
yi if i ≤ n/2k + `

z
i−(n/2k+`) otherwise.

Since p is a quadratic polynomial, the rows of Mp(Vi,Vj)ϕ are indexed by monomials
∅, y1, . . . yn/2k+`, yiyj , 1 ≤ i < j ≤ n/2k+` and columns are indexed by ∅, z1, . . . , zn/2k−`,
zizj , 1 ≤ i < j ≤ n/2k − `. The rows and columns indexed by degree 2 monomials will
have a rank of at most 2. Thus it is required to show that the submatrix of Mp(Vi,Vj)ϕ

with rows indexed by ∅, y1, . . . yn/2k+` and columns indexed by ∅, z1, . . . , zn/2k−` has
rank Ω(n/2k − |`|).

The (yi, zj)
th entry of Mp(Vi,Vj)ϕ contains ωi,n/2k+j . By suitably substituting the

variables ωi,n/2k+j with values from F, we see that the submatrix of Mp(Vi,Vj)ϕ restricted
to rows and columns indexed respectively by ∅, y1, . . . yn/2k+` and ∅, z1, . . . , zn/2k−` has
rank Ω(n/2k − |`|). ut

Theorem 1. For the parameterized polynomial family f = (fn,2k)n,k≥0 as above,

rankϕ(fn,2k) = Ω(
nk

(2k)2k
)

for every equi-partition ϕ : X → Y ∪ Z and k > 3.
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Proof. Let ϕ be an equi-partition of X. Note that by the definition of f , it is enough
to show that for all equi-partitions ϕ, there exists an optimal matching N such that

rankϕ(fN ) = Ω( nk

(2k)2k
), where fN =

∏
(i,j)∈N p(Vi, Vj). Since fN is multilinear, it is

enough to prove that ∀(i, j) ∈ N , rankϕ(p(Vi, Vj)) = Ω( nk2 ). Our argument is an iterative
construction of the required matching.

We begin with some notations. LetD(Vi) = |ϕ(Vi)∩Y |− |Vi|
2 . Let Yi = ϕ(Vi)∩Y, Zi =

ϕ(Vi) ∩ Z. We know ∀i ∈ [2k], |Vi| = n
2k . So, D(Vi) = |Yi| − n

4k is the imbalance of ϕ.
Since 0 ≤ |Yi| ≤ |Vi| = n

2k , D(Vi) ∈ [−n4k ,
n
4k ].

Let M ∈ M. For each edge e = (i, j) in the matching M , we associate a weight
with respect to ϕ: wt(e) = |D(Vi) + D(Vj)|. The weight of the matching M , denoted
by wt(M), is the sum of the weights of the edges in M , i.e., wt(M) =

∑
e∈M wt(e).

In the following, we give an iterative procedure, that given a matching M produces a
matching N with the required properties. The procedure in each iteration, obtains a new
matching of smaller weight than the given matching. The crucial observation then is,
matchings that are weight optimal with respect to the procedure outlined below indeed
have the required property. We say that a matching M is good with respect to ϕ, if
∀ e = (i, j) ∈ M , wt(e) ≤ n/2k − n/(2k(k − 1)). Note that if M is good then for every
edge (i, j) ∈M , we have Vi∪Vj is `-unbalanced for some ` with |`| ≤ n/2k−n/(2k(k−1)).
Then, by Lemma 3 we have rankϕ(fM ) ≥ n/(2k(k − 1)).

Suppose that the matching M is not good. Let e = (i, j) ∈M be an edge such that
wt(e) > n/2k−n/2k(k−1). If there are multiple such edges, e is chosen such that wt(e) is
the maximum, breaking ties arbitrarily. Note that we can assume that D(Vi) and D(Vj)
are of the same sign, else we would have wt(e) ≤ n/4k. Without loss of generality, assume
that both D(Vi) and D(Vj) to be non-negative, i.e., wt(e) = D(Vi) +D(Vj). Since ϕ is
an equi-partition, we have∑

m∈[2k]

D(Vm) =
∑

m∈[2k]

(
|Ym| −

n

4k

)
= 0 =⇒

∑
m∈[2k]\{i,j}

D(Vm) = −wt(e)

i.e.,
∑

e′∈M\{e}

sgn(e′)wt(e′) <
−n
2k

+
n

2k(k − 1)
,

where sgn(e) is ±1 depending on the sign of wt(e). By averaging, there is an e1 ∈ M
such that sgn(e1)wt(e1) < −n

2k(k−1) + n
2k(k−1)2 . Suppose e1 = (i1, j1). Let D(Vi) = a,

D(Vj) = b, D(Vi1) = c, D(Vj1) = d. Since c + d < 0, it must be that either c < 0 or
d < 0. The new matching is constructed based on the values of a, b, c and d.

Case 1 Suppose c, d < 0. Then, |a+b|+|c+d| > |a+c|+|b+d|. We replace the edges (i, j)
and (i1, j1) by (i, i1), (j, j1) to get a new matching M ′. We have wt(M ′) < wt(M).

Case 2 Either c ≥ 0 and d < 0 or c < 0 and d ≥ 0. Without loss of generality,
assume that c ≥ 0 and d < 0. Suppose c > n

4k −
n

2k(k−1) + n
2k(k−1)2 , then we have

d < −n
2k(k−1) + n

2k(k−1)2 − c <
−n
4k which is impossible as |d| ≤ n

4k . Therefore, we have

c ≤ n
4k −

n
2k(k−1) + n

2k(k−1)2 . If c > a, b, then a + b < 2c ≤ n
2k −

n
k(k−1) + n

k(k−1)2 .

For k > 3, this is impossible since wt(e) > n
2k −

n
2k(k−1) . We consider the following

sub-cases:

Subcase (a) a > c. Then a+ b > c+ b, replace the edges (i, j) and (i1, j1) with the
edges (i, j1) and (i1, j) to get the new matching M ′.

Subcase (b) b > c. Then a + b > a + c, replace (i, j) and (i1, j1) with the edges
(i, i1) and (j, j1) to get the new matching M ′.

For the new matching M ′ obtained from M as above, we have one of the following
properties:
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– It has smaller total weight than M , i.e., wt(M ′) < wt(M), or
– If M has a unique maximum weight edge, then the weight of any edge in M ′ is

strictly smaller than that in M , i.e. maxe′∈M ′ wt(e
′) < wt(e), or

– The number of edges that have maximum weight in M ′ is strictly smaller than that
in M , i.e., |{e′′ | wt(e′′) = maxe′∈M ′ wt(e

′)}| < |{e′′ | wt(e′′) = maxe′∈M wt(e′)}|.

Since all of the invariants above are finite, by repeating the above procedure a finite
number of times we get a matching N ∈ M such that any of the above steps are not
applicable. That is, for every e′ ∈ N , wt(e′) ≤ n/2k − n/2k(k − 1).

Thus for every edge (i, j) ∈ N , we have rankϕ(p(Vi, Vj) = Ω(n/2k(k − 1)) and
rankϕ(fN ) = Ω(nk/(2k)2k). By the construction of the polynomial and Lemma 1, we
have rankϕ(f) ≥ maxM∈M{rankϕ(fM )} = Ω(nk/(2k)2k), as required. ut

A high rank sum of three ROFs: In [16], Kayal et al. showed that there is a poly-
nomial that can be written as sum of three ROFs such that any ROABP computing it
requires exponential size. The lower bound proof in [16] is based on the construction of a
polynomial using three edge disjoint perfect matchings on n vertices. We need a 3-regular
mildly explicit family of expander graphs defined in [14]. Let G = (G(q))q>0, prime be a
family of 3 regular expander graphs where a vertex x in G(q) is connected to x+1, x−1
and x−1 where all of the operations are modulo q. When q is clear from the context, we
denote G(q) by G. Let G′ be the double cover of G, i.e., G′ = (V1, V2, E

′) is the bipartite
graph such that V1, V2 are copies of V and u ∈ V1, v ∈ V2, (u, v) ∈ E′ ⇐⇒ (u, v) ∈ E. It
is known from [14] that the set of edges in E′ can be viewed as the union of 3 edge disjoint
perfect matchings. In [16], Kayal et al. construct a polynomial for each of these match-
ings and the hard polynomial is obtained by taking the sum of these three polynomials.
This polynomial has degree n/2 and is unsuitable in the parameterized context.

We construct a polynomial h from G′ similar to the one in [16], but having degree-k.
Suppose M1 ∪M2 ∪M3 = E′ be disjoint perfect matchings. We divide the n edges in
each of the Mi into k

2 parts of n
k edges each. Suppose Mi = Bi1 ∪Bi2 ∪ · · · ∪Bik/2. The

division is done arbitrarily. So, for each edge (i, j) ∈ M , we consider a monomial xixj ,
and the final polynomial is the following:

h(x1, . . . , x2n) =
∑
i∈[3]

wi

 ∏
j∈[ k2 ]

∑
(u,v)∈Bij

xuxv

 ,

where M1,M2 and M3 are the edge-disjoint matchings such that Mi =
∏
j∈[ k2 ]

Bij ,

Bij being the jth partition of edges in the matching Mi and w1, w2 and w3 are formal
variables. For a partition ϕ : X → Y ∪ Z, and an edge (u, v) ∈ Mi, (u, v) is said to be
bichromatic with respect to ϕ if either ϕ(xu) ∈ Y and ϕ(xv) ∈ Z or ϕ(xu) ∈ Z and
ϕ(xv) ∈ Y . For a set of edges A over {x1, . . . , xn} let beϕ(A) be the number edges in
A that are bichromatic with respect to ϕ. For a graph G = (V,E), let beϕ(G) denote
beϕ(E).

Let D denote the uniform distribution on the set of all partitions ϕ : X → Y ∪ Z
such that |Y | = |Z|. In the following we state the desired property of the polynomial h:

Theorem 2. Let h be the polynomial defined as above. Then there is a constant c > 0
such that for every equi-partition ϕ of X, over the rational function field F(w1, w2, w3)

rankϕ(h) ≥
(n
k

)ck
.

Proof. Let Y ⊆ X = {x1, . . . , xn}, |Y | = n
2 such that ϕ : X → Y ∪ Z. By the expander

property of G ( see [16]), the number of edges from Y to Z is lower bounded by E(Y,Z) ≥
(2+10−4)

2 · |Y | = (1+ε)n
2 for a fixed ε > 0. (See [16] for details.)
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Now, each perfect matching has n
2 edges, so the graph has 3n

2 edges. By aver-
aging, we get that there is a matching Mi, 1 ≤ i ≤ 3 such that the number of

bichromatic edges in Mi is at least (1+ε)n
6 . Without loss of generality, suppose i = 1.

Let h1 =
∏
j∈[ k2 ]

∑
(u,v)∈B1j

xuxv, i.e., the polynomial corresponding to M1. Clearly,

if the bichromatic edges in M1 are distributed evenly across all sets in the parti-
tion B11, . . . , B1k/2, rankϕ(h1) = (((1 + ε)/3k)n)k/2. However, this is not possible in
general. Nevertheless, we get a smaller but good enough bound by a simple aver-

aging argument. Let beϕ(Mi) =
∑
j∈[ k2 ]

beϕ(Bij). We have beϕ(M1) ≥ (1+ε)n
6 . Let

α = |{j | beϕ(B1,j) ≥ n/20k}|. Then

(1 + ε)n

6
≤ beϕ(M1) ≤ αn

k
+ (k/2− α)

n

20k

i.e.,
(1 + ε)n

6
≤ αn

k
+ (k/2− α)

n

20k

=⇒ α ≥ (23 + 20ε)

114
k.

Note that rankϕ(
∑

(u,v)∈B1j
xuxv) = beϕ(B1j) and hence we have rankϕ(h1) ≥ ( n

20k )α =(
n
k

)ck
for some constant c > 0 as required. ut

4 Lower bounds

In this section we prove parameterized lower bounds for some special classes of syntactic
multilinear ABPs. In particular, we prove lower bounds for the size of ROABPs, strict
interval ABPs and a sum of restricted class of ROPs.

4.1 ROABP

In this section we prove a parameterized lower bound for the size of any ROABP com-
puting the polynomials defined in Section 3. The lower bound argument follows from the
fact that for any polynomial computed by an ROABP P , there exists an equi-partition
ϕ of variables such that rankϕ(P ) is bounded by the size of the ROABP [19].

Theorem 3. Any ROABP computing the polynomial family f = (fn,2k) requires size
Ω(nk/(2k)2k).

Proof. Let P be an ROABP of size S computing f . Consider an ordering from left
to right of the variables occurring in the ROABP, x1, x2, . . . , xn. We can define the
equi-partition ϕ : X → Y ∪ Z such that,

ϕ(xi) =

{
yi, if i ≤ n/2
zi−n/2 otherwise.

Now, let Li be a layer in P such that incoming edges to Li are labelled with a linear
polynomial in xi. Then, we can represent f as

f(x1, . . . , xn) =
∑

j∈Ln/2

[s, vj ]P · [vj , t]P .

By definition of ϕ, for all vj ∈ Ln/2, rankϕ([s, vj ]P · [vj , t]P ) = 1.

Then, rankϕ(f) ≤ |Ln/2| ≤ S. By Theorem 1, rankϕ(f) = Ω(nk/(2k)2k), therefore

we have S = Ω(nk/(2k)2k) as required. ut
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Combining Theorem 3 with Theorem 2 we get:

Theorem 4. An ROABP computing the family of polynomials h defined in Section 3
required size nΩ(k).

Proof. Follows from the proof of Theorem 3 that for any size S ROABP computing the
polynomial h, there is an equi-partition ϕ such that rankϕ(h) ≤ S. Then by Theorem 2,
we have S = nΩ(k) as required. ut

4.2 Strict interval ABPs

In this section we prove a parameterized lower bound against the polynomial family
f defined in Section 3 for the size of strict interval ABPs. Without loss of generality,
assume that π is the identity permutation. Let P be a π strict-interval ABP computing
the polynomial f . As a crucial ingredient in the lower bound proof, we show that using
the standard divide and conquer approach, a strict-interval ABP can be transformed into

a depth four circuit with n
√
k blow up in the size. To begin with, we need the following

simple depth reduction for strict interval ABPs computing degree k polynomials. Proof
is omitted.

Lemma 4. Let P be a syntactic multilinear ABP of size S computing a homogeneous
degree k polynomial g on n variables. Then there is a syntactic multilinear ABP P ′ of
depth k + 1 and size O(S · k) computing g such that:

1. Every node in the ith layer of P ′ computes a homogeneous degree i polynomial.
2. If P is strict interval then so is P ′.

Using Lemma 4 we can obtain a parameterized version of depth reduction to depth
four circuits:

Lemma 5. Let g(x1, . . . , xn) be a multilinear polynomial of degree k computed by a
syntactic multilinear branching program P of size S. Then

g(x1, . . . , xn) =

T∑
i=1

√
k∏

j=1

fi,j (1)

for some T = SO(
√
k) and fi,j is a degree

√
k multilinear polynomial computed by a

sub-program of P for i ∈ {1, . . . , T}, j ∈ {1, . . . ,
√
k}.

Now, to prove the claimed lower bound for the size of strict interval ABPs, all we need
is given a polynomial f computed by an strict interval ABP of size S, an equi-partition
ϕ of X such that rankϕ(f) << nk.

Lemma 6. Let f be a polynomial computed by a strict interval ABP of size S. Then

there is a partition ϕ such that rankϕ(f) ≤ SO(
√
k)n
√
k.

Proof. Without loss of generality, assume that P is a strict interval ABP with respect
to the identity permutation. Let ϕmid : X → Y ∪ Z be the partition

ϕmid(xi) =

{
yi, if i ≤ n/2,
zi−n/2 otherwise.

Consider the representation for f as in (1). Then for every 1 ≤ i ≤ T , for all but
one j, we have either ϕmid(var([ij , ij+1])) ⊆ Y or ϕmid(var([ij , ij+1])) ⊆ Z. Therefore,

rankϕmid
([s, i1]P ·

∏√k−2
m=1 [im, im+1]P · [i√k−1, t]P ) ≤ n

√
k, for every ij ∈ Lj√k. By sub-

additivity of rankϕ, we have rankϕ(f) ≤ SO(
√
k)n
√
k for ϕ = ϕmid. ut

The required lower bound is immediate now.

Corollary 1. Any strict-interval ABP computing the polynomial f has size nΩ(
√
k).
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4.3 Rank bound for ROPs by Graph representation

The reader might be tempted to believe that the lower bound arguments in the preceding
sections might be applicable to more general models such as sum of ROFs and sum of
ROABPs or even multilinear formulas. However, as we have seen in Section 3, there is a
sum of three ROFs that has high rank under every partition. Thus our approach using
rankϕ as a complexity measure is unlikely to yield lower bounds for even sum of ROFs,
which is in contrast to the classical setting, where exponential lower bounds against
models such as sum of ROFs and sum of ROABPs follow easily.

In this section, we develop a new method of analyzing rank of degree k polynomials
computed by ROFs. Let p ∈ F[X] be the polynomial computed by a ROF Φ. We want
to construct a graph Gp = (X,Ep) corresponding to p so that rankϕ(p) can be related
to certain parameters of the graph. A v in Φ is said to be a maximal-degree-two gate if
v computes a degree two polynomial, and the parent of v computes a polynomial whose
degree is strictly greater than two. Further, v is said to be a maximal-degree-one gate if
v computes a linear form and the parent of v computes a polynomial of degree strictly
greater than one. A gate v at depth 1 is said to be a high degree gate if the degree of
the polynomial computed at v is strictly greater than two. Let V2 denote the set of all
maximal-degree-two gates in Φ, V1 denote the set of all maximal-degree-one gates and
V0 denote the set of all high degree gates in Φ at depth one. Let atomic(Φ) = V0∪V1∪V2.
The following is a straightforward observation:

Observation 1 Let Φ be an ROF and v be a maximal-degree-two gate in Φ. Then the
polynomial Φv computed is of the form Φv =

∑s
i=1 `i1`i2 , where `ij 1 ≤ i ≤ s, j ∈ {1, 2}

are variable disjoint linear forms for some s > 0 such that each of the `ij is dependent
on at least one variable.

For a linear form ` =
∑r
j=1 αijxij , let path(`) be the simple undirected path (xi1 , xi2),

(xi2 , xi3), . . . , (xir−1 , xir ). In the case when r = 1, path(`) is just single vertex. Similarly,
for a subset S ⊆ X of variables, let path(S) denote the path (xi1 , xi2), (xi2 , xi3), . . . ,
(xir−1

, xir ) where S = {xi1 , . . . , xir}, i1 < i2 < . . . < ir. For two variable disjoint linear
forms ` and `′, let path(``′) be the path obtained by connecting the last vertex in path(`)
to the first vertex of path(`′) by a new edge. Now, we define a graph Gp = (X,Ep) where
vertices correspond to variables xu ∈ X and the set of edges Ep defined as follows. For
each v ∈ atomic(Φ) we add the following edges to Ep:

Case 1 Φv =
∑r
i=1 `i1`i2 for some r > 0 add path(`i1`i2) to Gp for every 1 ≤ i ≤ t.

Case 2 Φv =
∏
i∈S xi or Φv =

∑
i∈S cixi, where S ⊆ X, cis are constants from F, add

path(S) to Gp.

It may be noted that the graph Gp is not unique as it depends on the given minimal
ROF Φ computing f . In the following, we show that for a given partition ϕ, we bound
the rankϕ(p) in terms of the number of bichromatic edges beϕ(Gp). We have:

Theorem 5. Let p ∈ F[X1, . . . , Xn] be a multilinear polynomial of degree k computed

by a ROF Φ. Then, for any any equi-partition ϕ : X → Y ∪Z, rankϕ(p) ≤ (4beϕ(Gp))
k
2 .

Proof. The proof is by induction on the structure of Φ. The base case is when the root
gate of Φ is in atomic(Φ). Consider a node v ∈ atomic(Φ).

Case 1 Φv =
∑

(i,j)∈S xixj . If ϕ(xi), ϕ(xj) are not in the same partition, then each

monomial xixj contributes 1 towards rankϕ(p). At the same time, the edge (xi, xj)
added to Ep is bichromatic, so each monomial contributes 1 towards the measure
beϕ(Gp) as well.
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Case 2 Φv =
∑

(a,b)∈T `a`b. If, for some xi, xj ∈ var(`a), ϕ(xi), ϕ(xj) are in different

partitions, then the linear form `a contributes 2 towards rankϕ(`a). If the same holds
true for `b, then `a`b would together contribute 4 towards rankϕ(p) and ≥ 2 towards
the measure beϕ(Gp).

Case 3 Φv =
∑
i∈W1

cixi or Φv =
∏
i∈W2

xi for some W1,W2 ⊆ X. The first case has
been considered already. For the second case, if ∃xa, xb ∈W2 such that ϕ(xa), ϕ(xb)
are in different partitions, the polynomial computed by the gate v will contribute a
1 towards rankϕ(p) and at least 1 towards beϕ(Gp), otherwise it contributes 0.

Thus we have verified that the statement is true when the root gate v of Φ is contained
in atomic(Φ). Suppose p = p1 op p2 for op ∈ {+,×} where p1 and p2 are variable disjoint

and are computed by ROFs. By induction hypothesis, rankϕ(pj) ≤ (4beϕ(Gpj ))
kj
2 where

kj = deg(fj). As beϕ(Gp) = beϕ(Gp1) + beϕ(Gp2) and k = k1 + k2 (op = ×) or

k = max{k1, k2} (op = +) we have, rankϕ(f) ≤ (4beϕ(Gp))
k
2 as required. ut

Recall that bisection of an undirected graph G = (V,E) is a set S ⊆ V such that
|S| = |V |/2. The size of a bisection S is the number of edges across S and S, i.e.,
|{(u, v) | (u, v) ∈ E, u ∈ S, v /∈ S}|. The following is an immediate corollary to Theo-
rem 5:

Theorem 6. Let G be a graph on n vertices such that there is a bisection of G of
size n1−ε. Suppose p1, . . . , ps be ROFs such that Gpi is a sub-graph of G. Then, if
p = p1 + · · ·+ pS we have S = (nΩ(k)/t(k)), where t is a computable function on k.

Proof. Let C = (S, S) be the cut and size(C) denote the number of edges across the cut.
Define a partition ϕ : X → Y ∪ Z as follows:

ϕ(xi) ∈

{
Y if i ∈ S,
Z otherwise.

Then by Theorem 5, rankϕ(pi) ≤ beϕ(Gpi))
k
2 . Since Gpi is a sub-graph of G, we have

beϕ(Gp)) ≤ size(C) ≤ n1−ε. Therefore, rankϕ(pi) ≤ Ok(n(1−ε)k/2). By sub-additivity,
we have rankϕ(f) ≤ SOk(n(1−ε)k/2) where Ok is upto a factor that depends only on a
function of k. By Theorem 1, we get S = Ω(nεk/2). ut

Conclusions

Our results demonstrate the challenges in translating classical arithmetic circuit lower
bounds to the parameterized setting, when the degree of the polynomial is the param-
eter. We get a full rank polynomial that can be computed by depth four arithmetic
circuits of fpt size, whereas in the classical setting, full rank polynomials cannot be
computed by multilinear formulas of polynomial size [21]. This makes the task of prov-
ing parameterized lower bounds for algebraic computation much more challenging task.
Given the application of polynomials whose degree is bound by a parameter in the de-
sign of efficient parameterized algorithms for many counting problems, we believe that
this is a worthy research direction to pursue.

Further, we believe that our results are an indication that study of parameterized
complexity of polynomials with degree as the parameter could possibly shed more light
on the use of algebraic techniques in parameterized algorithms.
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