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Abstract

We show that polynomial hitting set generator defined by Shpilka and Volkovich [1] has the following prop-

erty:

If an n variate polynomial f has a partition of variables such that the partial derivative matrix [2] has

large rank then its image under the Shpilka-Volkovich generator too has large rank of the partial derivative

matrix even under a random partition.

Further, we observe that our main result is applicable to a larger class of hitting set generators that are

defined by polynomials with small dual representation.
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1. Introduction

The arithmetic circuit identity testing problem (ACIT) is to test if the given polynomial represented by

an arithmetic circuit is identically zero. The problem has received wide attention and there is a randomized

polynomial time algorithm for ACIT due to Ore [3], DeMillo, Lipton [4], Schwartz [5] and Zippel [6]. A

deterministic polynomial time (or even quasi-polynomial time) for the black-box version of ACIT implies5

arithmetic circuit lower bounds [7, 8]. Due to its primary importance in algebraic complexity theory, ACIT has

received wide attention [9, 10]. Despite several approaches towards the problem, a deterministic polynomial

time algorithm for ACIT remains elusive.

While the class P remains the primary notion of efficient computation there are several relaxed notions of

efficiency that allow either approximate solutions or efficient solutions for controlled inputs. Parameterized10

Complexity Theory, introduced by Downey and Fellows [11], proposes a parameterized multi-dimensional

view of efficiency. More precisely, every input of length n is associated with a parameter k. A problem is

said to be fixed parameter tractable (FPT for short) if there is a deterministic algorithm that runs in time

f(k)n(O(1)), where f is an arbitrary computable function on the parameter k. Parameterized Complexity

IA preliminary version of this article was a part of an article published at the The 23rd Annual International Computing
and Combinatorics Conference, COCOON 2017

Preprint submitted to Information Processing Letters April 12, 2019



Theory has lead to a lot of research in the area of algorithms and FPT is now widely accepted as a relevant15

notion of efficiency from a practical as well as theoretical perspective. In the parameterized world, the W

hierarchy is the primary notion of intractability. (See [11] for a formal definition of the W hierarchy.)

Lack of progress in obtaining a deterministic polynomial time algorithm for ACIT is a natural reason to

look into other notions of efficiency. In particular, it would be interesting to develop techniques that give

efficient parameterized algorithms for ACIT. There are several candidates for parameters, viz., the number of20

variables, the degree of the polynomial, multiplication depth of the circuit given at the input etc. Müller [12]

considered some of these parameters and studied the corresponding parameterized ACIT. He also designed

the parameterized versions of the randomized algorithm by Schwartz and Zippel [5, 6] for the same. It

may be noted that the algorithms proposed by Müller requires f(k)nO(1) many random bits, where n is the

number of variables and f an arbitrary function of the parameter. To be able to compare the parameterized25

complexity of ACIT with problems in the the W hierarchy, the randomized algorithms for parameterized

variants of ACIT should use random bits bounded by f(k) log n, where f(k) is a computable function of

the parameter. (The corresponding complexity classes were defined by Müller [12] and extended in [13].)

While such randomness efficient parameterized algorithms are not known for the parameters introduced by

Müller [12], Chauhan and Rao [13] obtained what can be called bounded randomness version of Schwartz-30

Zippel [5, 6] with the degree of the polynomial as a parameter by giving a randomized algorithm that uses

at most f(k) log n random bits.

The primary component in the algorithm by Chauhan and Rao [13] is a hitting set generator defined

by Shpilka and Volkovich [1]. Recall that a hitting set generator for a class C of arithmetic circuits is a

family G = (Gn)n≥0 of polynomial maps such that for any polynomial f ∈ C, f ≡ 0 if and only if G(f) ≡ 0.35

The main observation in [13] was that the hitting set generator defined in [14] (SV-generator) is indeed a

hitting set generator for degree k polynomials. In fact the SV-generator has received wide attention in the

literature. Anderson, van Melkebeek and Volkovich [15] obtained quasipolynomial time algorithm for ACIT on

multilinear read-k formulas using the SV-generators as one of the ingredients. In [16] Minahan and Volkovich

use the SV-generator for obtaining a complete black-box deterministic algorithm for reconstructions of read40

once polynomials.

The applications of SV-generator for obtaining deterministic algorithms for ACIT on special classes of

circuits leads to the following question: Can the existing hitting set generators be used to obtain deterministic

parameterized algorithms for ACIT for larger classes of circuits? More specifically, we ask: what are the

classes of circuits where SV-generator can be used to obtain efficient deterministic parameterized algorithms45

for ACIT?

One possible approach to obtain a deterministic algorithm for ACIT on a class C of circuits is to obtain

a hitting set generator G such that for every f ∈ C, G(f) is in a class of circuits where deterministic
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algorithms for ACIT are known (e.g., sparse polynomials, non-commutative formulas). We show that this

approach for the SV-generator does not work when we consider G(f) to be a small sum of product of50

univariate polynomials (Theorem 1 and Corollary 1), a class for which ACIT is known [18]. This is done

by showing that for any polynomial f with large rank of the polynomial coefficient matrix (See Section 2

for a definition), the coefficient matrix for G(f) has large rank with high probability. Our proof exploits

the structure of the SV-generator and generalizes to generator families F such that it is possible to project

G ∈ F to a smaller set of variables and obtain G′ ∈ F (Corollary 1).55

Our result indicates that the classes of circuits that contain polynomials whose polynomial coefficient

matrices have full rank under every partition are perhaps the hardest instances for obtaining deterministic

algorithms for ACIT.

2. Preliminaries

In this section we introduce necessary notions on arithmetic circuits and parameterized complexity. For60

more details the reader is referred to [17] and [11]. We represent the polynomial ring F[x1, . . . , xn] by F[X].

We require the notion of hitting set generators. Consider a polynomial mapping G : F[x1, . . . , xn] →

F[y1, . . . , yt] where G is defined by t variate polynomials G1, . . . , Gn such that G(xi) = Gi for 1 ≤ i ≤ n.

Image of a polynomial f ∈ F[x1, . . . , xn] under G is denoted by G(f) and is given by f(G1, . . . , Gn). G is

said to be a hitting set generator for the circuit class Cn if for every polynomial f ∈ Cn, f 6≡ 0, it holds that65

G(f) 6≡ 0.

Primary interest of this article is a hitting set generator defined by Shpilka and Volkovich [1]:

Definition 1 (SV-generator [1]). Let n be the number of variables and a1, a2, . . . , an be distinct elements

in the field F. Let Gi
n,k ∈ F[y1, y2 . . . yk, z1, z2 . . . zk] be the polynomial defined as follows:

Gi
n,k(y1, y2 . . . yk, z1, z2 . . . zk) =

k∑
j=1

Li(yj)zj , where Li(x) =

∏
j 6=i(x− aj)∏
j 6=i(ai − aj)

,

Li(x) are Lagrangian Interpolation polynomials, and Li(aj) = 1 if i = j. The generator Gn,k is defined as

Gn,k
∆
= (G1

n,k, . . . G
n
n,k).

However, when n is clear from the context, we can denote Gn,k by Gk. For a polynomial f , Gk(f) is70

the image of f under Gk, i.e, Gk(f) = f(G1
k, . . . , G

n
k ). In [1], Shpilka and Volkovich showed that Gk is a

hitting set generator for sum of k read-once polynomials. Further, in [13] Chauhan and Rao showed that

the generator Gk is also a hitting set generator for degree k polynomials. We state the result without proof.

Lemma 1. [13] Let f ∈ F[X] with deg(f) ≤ k, then f ≡ 0 ⇐⇒ Gk(f) ≡ 0, Gk is as in Definition 1.
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Coefficient Matrix of a polynomial75

We consider the notion of partial derivative matrix of a polynomial defined by Nisan [19] and later used

in [20]. Raz [2] used a variant of partial derivative matrix, which was later generalized by Kumar et al [21].

In this paper we consider yet another variant of partial derivative matrices, which we call as the coefficient

matrix of a polynomial.

Definition 2. Let f ∈ F[x1, . . . , xn] be a polynomial of degree d, ϕ : X → Y ∪Z be a partition of the input80

variables of f . Then the coefficient matrix Mfϕ has its rows indexed by monomials µ of degree at most d in

variables in Y , and columns indexed by monomials ν of degree at most d in variables in Z. For monomials

µ and ν respectively in variables Y and Z, the entry Mfϕ(µ, ν) is the coefficient of the monomial µν in f .

The coefficient matrix of a polynomial is well studied in the literature in various forms, the specific form

used in the above definition has not been mentioned explicitly in the literature. The fundamental properties85

of sub-additivity and sub-multiplicativity of the rank of the coefficient matrix follow directly from [2].

3. SV generator preserves rank

In this section, we show that images of a polynomial f under the SV generator have many partitions

where the coefficient matrix has non-FPT rank provided f has one such partition. More generally, we show

that the rank of the coefficient matrix of a polynomial acts as an invariant for the SV generator.90

Theorem 1. Let f ∈ F[x1, . . . , xn] be a polynomial of degree ≤ k. Let g = G2k(f). Then,

∃ϕ, rank(Mfϕ) ≥ R =⇒ Prϕ′ [rank(Mgϕ′ ) = R] ≥ Ω(1/22k),

where the probability is taken over the uniform distribution over the set of all partitions of the variables in

g into two parts of equal size.

Approach. Suppose there is a partition ϕ of the variables in f such that rank(Mfϕ) ≥ R. In order to prove

that rank is preserved under the map G2k, we show that any R linearly independent rows of the Mfϕ remain

linearly independent in the coefficient matrix of the image polynomial g = G2k(f). However, this does not95

immediately give a partition in the variables of g so that the coefficient matrix has high rank. We show that,

in fact for at least 1/22k fractions of the partitions of variables of g, the coefficient matrix of g has large

rank.

Proof. Fix a1, . . . , an ∈ F be distinct elements. Recall that the generator G2k with respect to a1, . . . , an is
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defined as (G1
2k, . . . , G

n
2k), i.e, G2k(xi) = Gi

2k ∀i ∈ {1, . . . , n}. Consider :

G2k(xi) =

2k∑
p=1

zpLi(yp)

=

2k∑
p=1

zp

∏
j 6=i(yp − aj)∏
j 6=i(ai − aj)

=

2k∑
p=1

zp
(yp − a1) . . . (yp − ai−1)(yp − ai+1) . . . (yp − an)

(ai − a1) . . . (ai − ai−1)(ai − ai+1) . . . (ai − an)

=

2k∑
p=1

n∑
q=1

bpzpy
n−q
p (−1)qSYMn−1,q−1 (by expanding the product, bp is a constant)

=
∑

p∈[2k]
q∈[n]

zpy
n−q
p cpqi (where cpqi = bp(−1)qSYMn−1,q−1(a1, . . . , ai−1, ai+1, . . . , an)).

Multiplying out any of the k terms obtained above, we get

G2k(xi1xi2 . . . xik) =
∑

p1,...,pk∈[2k]
q1...qk∈[n−1]

zp1
. . . zpk

yn−q1p1
. . . yn−qkpk

k∏
j=1

cpjqjij

Let Mk be the set of all degree k monomials in the variables {x1, . . . , xn}, and Snk be the set of all

monomials of the form
∏

i∈I ziy
n−qi
i , for all multi-sets I ⊆ {1, . . . , 2k} of size k and q = (q1, . . . , qk) with100

1 ≤ qi ≤ n − 1. Let V = Span(Mk), and W = Span(Snk) be the vector spaces spanned respectively

by the sets Mk and Snk. The vector space V contains all polynomials in F of degree k, and hence the

dimension of V is
(
n+k
k

)
. Also, dimension of W is bounded by

(
4k
k

)
nk. Note that G2k is a linear map from

V to W . Let C be the
(
n+k
k

)
×
(

4k
k

)
nk matrix representing G2k as a linear map from V to W . Then,

∀v ∈ V, G2k(v) = CT v ∈W . Now, we argue that C has full row-rank.105

Claim 1. C has full row-rank.

Proof of the Claim. Suppose C is not of full row rank. Then ∃ αi1 , . . . , αir ∈ R, such that
∑r

j=1 αijC[ij ] = 0

with αij 6= 0 for some j, where C[i] represents the ith row of C, and r ≤ dim(V ). Hence, as G2k is linear,

we deduce that ∃vi1 , . . . , vir ∈ V such that G2k(vij ) = C[ij ]. Then we have:

r∑
j=1

αijG2k(vij ) = 0 =⇒
r∑

j=1

G2k(αijvij ) = 0 =⇒ G2k(αi1vi1 + . . .+ αirvir ) = 0

We can see that P ≡ α1vi1 + . . . + αirvir is a polynomial of degree at most k in F[x1, . . . , xn], such that

G2k(P ) ≡ 0, whereas P 6≡ 0 since ∃αij 6= 0. This contradicts Lemma 1. Hence, the Claim is proved.

Consider a partition ϕ : X → A ∪ B and suppose rank(Mfϕ) ≥ R. Let m1, . . . ,mR be R linearly

independent rows of Mf (chosen arbitrarily). Let p1, . . . , pR be the polynomials representing these rows,110
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i.e., pi =
∑

S⊆B Mf [mi,mS ]mS . Then p1, . . . , pR are linearly independent, i.e., ∀α1 . . . αR ∈ F,
∑R

i=1 αipi =

0 =⇒ ∀i, αi = 0. Let qi = G2k(pi), 1 ≤ i ≤ R then clearly,
∑R

i=1 αiqi = 0 =⇒ ∀i, αi = 0. Suppose

G2k : F[x1, . . . , xn] → F[Y ∪ Z] where Y = {y1, . . . , y2k} and Z = {z1, . . . , z2k}. Consider the arbitrary

partition: Y = Y1 ∪ Y2, |Y1| = |Y2| = k. Let Z = Z1 ∪ Z2, |Z1| = |Z2| = k, where Z1 = {zi | yi ∈ Y1} and

Z2 = Z \ Z1. Define the map Ĝ2k = (Ĝ
(1)
2k , . . . , Ĝ

(n)
2k ), where115

Ĝ
(i)
2k = Ĝ2k(xi) =

G
(i)
2k |{w=0|w∈Y2∪Z2} if i ∈ A

G
(i)
2k |{w=0|w∈Y1∪Z1} if i ∈ B

Note that the polynomial G
(i)
2k |{x=0|x∈Y2∪Z2} is indeed a copy of Gi

k for every i, and the same holds for

G
(i)
2k |{x=0|x∈Y2}. Hence, Ĝ2k is defined over Y1 ∪Z1 for i ∈ A, and over Y2 ∪Z2 for i ∈ B. Now, the partition

ϕ naturally induces a partition ϕ′ of Y ∪ Z.

Let q′i = Ĝ2k(pi), m
′
i = Ĝ2k(mi). Note that m′1, . . . ,m

′
R are linearly independent. This follows from the

fact that if
∑

i∈[R] αim
′
i = 0 and ∃i ∈ [R], αi 6= 0, then

∑
i∈[R] αiĜ2k(mi) = Ĝ2k(

∑
i∈[R] αimi) = 0, since120

Ĝ2k is a linear map. But we know,
∑

i∈[R] αimi 6= 0 as m1, . . . ,mR are distinct monomials. As Ĝ2k is a

hitting-set generator, Ĝ2k(
∑

i∈[R] αimi) 6= 0.

From the above observations, we have that the polynomials q′1, . . . , q
′
R are linearly independent. Since

each of the q′is correspond to multiple rows (indexed by all possible monomials Y1 ∪ Z1 occurring in q′i) in

the matrix Mgϕ′ , we have rank(Mgϕ′ ) ≥ R. Now, to prove the required probability bound, note that the125

choice of the partition Y ′ = Y1 ∪ Y2 was arbitrary, and the choice of the partition Z ′ = Z1 ∪ Z2 follows

from that, since ∀yj ∈ Y1, zj ∈ Z1. Hence, the rank bound holds for all the
(

2k
k

)
such partitions of Y . Thus

Pr[rank(Mgϕ′ ) ≥ R] ≥
(

2k
k

)
/
(

4k
2k

)
= Ω(1/22k).

It may be noted that the for R = nΩ(k) there are degree k polynomials computed by ΠΣΠ circuits where

there is a partition ϕ such that Theorem 1 is applicable. Here is an example:130

Example. The polynomial p =
∏ k

2
i=0

(
x in

2k +1x in
2k +2 + . . .+ x (i+1)n

2k −1
x (i+1)n

2k

)
has rank nk/2/2kk/2 under the

partition ϕ such that ∀ odd i ∈ [n], ϕ(xi) ∈ Y , else ϕ(xi) ∈ Z.

It is not clear if Theorem 1 can be generalized to arbitrary hitting set generators for polynomials pa-

rameterized by the degree. The main challenge here is to obtain a partition under which the image of the

generator has rank R. The crucial property of the SV-generator that is used to obtain a partition is the135

fact that substituting a suitable subset of variables to zero results in a a copy of the generator with a fewer

number of variables. In fact, it may noted that any family of generators whose suitably chosen projections

give a generator from the same family. We call such generators SV-like generators.

Let H = (Hn,t)1≤t≤n be a family of generators, where Hn,t : F[x1, . . . , xn] → F[y1, . . . , yt]. We say that

Hn,t is a SV like generator, if for 1 ≤ t ≤ n, Hn,t(xi) there exists a subset S ⊆ {y1, . . . , yt}, |S| = t/2 such140
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that, H(n,t) |{y=0|y∈S} and H(n,t) |{y=0|y/∈S} are both copies of H(n,t/2).

Corollary 1. Let H = (Hn,2t)1≤2t≤n be an SV like hitting set generator such that Hn,2t is a hitting set

generator for degree t polynomials on n variables. Let f = f(x1, . . . , xn) be any polynomial of degree t/2 and

h = H(f). Then,

∃ϕ, rank(Mfϕ) ≥ R =⇒ ∃ϕ′rank(Mhϕ′ ) ≥ R.

Proof. The argument is essentially the same as in Theorem 1. Let k = t/2, and let Mk be the set of all

degree k monomials in the variables {x1, . . . , xn}, and Sn,k be the set of all monomials that appear in at

least one of the polynomials in the image set ofMk under the map Hn,2t. Note that Sn,k is a finite set. Let

V = Span(Mk), and W = Span(Sn,k) be the vector spaces spanned by the sets of monomials. The vector145

space V contains all polynomials in F of degree k. As in Claim 1, it can be concluded that H is a linear map

from V to W that has full row-rank.

Consider a partition ϕ : X → A ∪ B such that rank(Mfϕ) ≥ R. Let m1, . . . ,mR be row indices of

R linearly independent rows of Mf (chosen arbitrarily). Let p1, . . . , pR be the polynomials represented by

these rows, i.e., pi =
∑

S⊆B Mf [mi,mS ]mS . Then the polynomials p1, . . . , pR are linearly independent, i.e.,150

∀α1 . . . αR ∈ F,
∑R

i=1 αipi = 0 =⇒ ∀i, αi = 0. Let qi = G2k(pi), 1 ≤ i ≤ R then clearly,
∑R

i=1 αiqi = 0 =⇒

∀i, αi = 0. Consider the partition of Y = {y1, . . . , y2t} to Y1 ∪ Y2, where Y1 = S, Y2 = {y1, . . . , y2t} \ S. We

have |Y1| = |Y2| = t. Define the map Ĥ(n,2t) = (Ĥ(1), . . . , Ĥ(n)), where

Ĥ(i) = Ĥ(xi) =

H
(i)
(n,2t)|{w=0|w∈Y2} if i ∈ A

H
(i)
(n,2t)|{w=0|w∈Y1} if i ∈ B

Note that the polynomial H
(i)
(n,2t)|{x=0|x∈Y2} is indeed a copy of Hi

(n,t) for every i, and the same holds for

H
(i)
(n,2t)|{x=0|x∈Y1}. Hence, Ĥ(n,2t) is defined over Y1 for i ∈ A, and over Y2 for i ∈ B. Thus, the partition ϕ155

naturally induces a partition ϕ′ of Y .

Let q′i = Ĥ(n,2t)(pi), m
′
i = Ĥ(n,2t)(mi). Now we argue that m′1, . . . ,m

′
R are linearly independent, since

m1, . . . ,mR are linearly independent. Suppose not, and let α1, . . . , αR ∈ F be such that
∑R

i=1 αim
′
i = 0. Since

Ĥn,2t is a linear map from V to W , we have Ĥ(n,2t)(
∑R

i=1 αimi) =
∑R

i=1 αiĤ(n,2t)(mi) =
∑R

i=1 αim
′
i = 0, a

contradiction to the fact that Ĥ(n,2t) is a copy of Hn,t and is a hitting set generator for degree k polynomials.160

From the above observations, we have that the polynomials q′1, . . . , q
′
R are linearly independent. Since

each of the q′is correspond to multiple rows in the matrix Mhϕ′ , we have rank(Mhϕ′ ) ≥ R.

4. Conclusion

We have showed that the SV-generator with suitable parameters preserves the rank of partial derivative

matrix of the polynomial with suitable partition of the variables. The main hurdle in generalizing our165
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technique to arbitrary hitting set generators for degree k polynomials is the lack of structure of the generators

under substitution of variables. It would be interesting to see if general hitting sets preserve the rank of

partial derivative matrix, or rather any complexity measure.

Finally, it will be interesting to see if hitting set generators can reduce the complexity of a polynomial.

More precisely, suppose C1 and C2 are algebraic complexity classes. Let G be a family of hitting set generators170

for C1. If C2 ⊂ C1, is it possible that G(f) ∈ C2 for every f ∈ C1?
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