
ON LOWER BOUNDS AND PIT FOR

PARAMETERIZED ALGEBRAIC MODELS

A THESIS

submitted by

PURNATA GHOSAL

for the award of the degree

of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

APRIL 2020

THESIS CERTIFICATE

This is to certify that the thesis titled On Lower Bounds and PIT for Parameterized

Algebraic Models, submitted by Purnata Ghosal, to the Indian Institute of Technol-

ogy, Madras, for the award of the degree of Doctor of Philosophy, is a bona fide record

of the research work done by her under our supervision. The contents of this thesis,

in full or in parts, have not been submitted to any other Institute or University for the

award of any degree or diploma.

Dr. B. V. Raghavendra Rao
Research Guide
Associate Professor
Dept. of Computer Science and
Engineering
IIT Madras, 600036

Place: Chennai

Date: 24th April 2020

ACKNOWLEDGEMENTS

I want to begin by thanking my parents, for giving me the opportunity to be at the place

in my life I am now. I will always be indebted to the kind and sensitive teachers at

Carmel Convent School, Durgapur who shaped my thoughts and were forever encour-

aging us girls to pursue a career in STEM if we wanted to, despite the disadvantages

we faced. I remember the reassuring confidence of my math teacher Ms. Gomathy

Kannan in my abilities, which was the only reason I could overcome my anxiety for the

school final examination. My friends from the school days, Alorika Chatterjee, Subhra

Mazumdar, Deepanjali Sharma were great companions in growing and exploring our

futures together.

I was blessed with inquisitive friends in my formative years at IIEST, Shibpur. Pre-

rona Ghosh, Sayak Panja, Sambhuti Pathak were my support system there, and helped

me through many difficulties. I found inspiration and companionship in Arpan Das,

who found interesting ways to expand the scope of our algorithm designing assign-

ments. His enthusiasm for thinking out of the box made me understand and learn from

the courses, and generally led to my interest in pursuing an academic career. At Shibpur

I also met Anubrata Das, whose dedication in keeping alive his musical interests made

me believe one can find happiness in more than one thing, and that sometimes the joy

found in a hobby can immensely help in coping with the stress of research.

At IIT Madras, I am grateful to have attended courses taken by B. V. Raghavendra

Rao, my advisor, and Jayalal Sarma, Meghana Nasre and John Augustine. Their teach-

ing made me understand how exciting the subject matters of the courses could be. From

their lectures, I also learnt a lot about presenting complicated concepts in a way that is

understandable to others. I would specially like to thank Jayalal Sarma for his lectures

that stoked much of my interest in computational complexity theory. I will forever cher-

ish the sleepless nights spent by Meenakshi Ray and me in navigating his courses, and

in the process discovering our shared interest in the subject.

In the Algorithms and Complexity Theory lab, I met some amazing researchers and

i

lovely friends in Sumathi Sivasubramaniam, Sajin Koroth, Krishnamoorthy Dinesh, C.

Ramya, Subhadra Nanda and Sampriti Roy. I cannot thank Sajin and Dinesh enough

for being beside me on my darkest days, whether it was during their stint in IITM or

after. They have provided me invaluable advice both academically as my TAs and in

research.

Outside the lab, I found excellent company in Sellam Muruganantham, Nikita Sax-

ena, Puja Jha and Rutvi Sanghavi during my initial years at IITM and Sowmya S. Sun-

daram in the last few years. I thank Rutvi for all the lazy afternoons and nights we

spent discussing creative story-lines for possible fiction novels, that made the stress and

anxiety of my stint here much more bearable. Sowmya and I have together survived

several mental health roller coasters, and I wish her all the best in both her dance and

career endeavours in the future. Dr. Sumathi Narayanan guided me through my bad

mental health days and provided me tools to handle my anxiety and panic that will last

me throughout my life.

Finally, I would like to thank my guide B. V. Raghavendra Rao for painstakingly

correcting my mistakes, both in the writing of this thesis and otherwise, and helping

through every step of the way in this incredible journey. He has helped me grow as

a researcher and as a person and has helped me realise in a fundamental way what a

researcher’s ethics should be. I hope I am able to put into good use all that I have learnt

from him on my way forward.

ii

ABSTRACT

KEYWORDS: Algebraic Complexity Theory, Parameterized Complexity, Lower

Bounds, Polynomial Identity Testing, Hitting Set Generators

Polynomials are fundamental objects in mathematics and have wide applications in

mathematics as well as computer science. In theoretical computer science, computa-

tional problems on graphs are often reduced to computational problems on polynomi-

als. Therefore, a study of polynomials becomes imperative for the progress of research

in this area. Algebraic complexity theory is the study of polynomials in terms of the

number of elementary arithmetical operations needed for computing a polynomial. In

order to count these elementary operations, it is important to represent the polynomial

in a succinct manner.

There are several ways of representing a polynomial. The representation of polyno-

mials widely used is the arithmetic circuits model of computation, formally defined by

Valiant (1979). An arithmetic circuit of size polynomial in the number of input variables

denotes the notion of efficiency in algebraic complexity theory.

Polynomials are grouped into classes on the basis of restrictions on the arithmetic

circuit computing them. An important part of the study of algebraic complexity is

studying the relationship between classes of polynomials. This question can be formally

restated as the arithmetic circuits lower bound problem, which is the main subject of

this thesis. The arithmetic circuits lower bound problem is defined as the computation

of the minimum size of a circuit in a given class, required for computing a given explicit

polynomial.

In this thesis, we study lower bounds on a class of circuits with a semantic restriction

of multilinearity. A polynomial is multilinear if the degree of a variable in any mono-

mial cannot exceed one, and a multilinear circuit is such that every gate in the circuit

computes a multilinear polynomial. Read-once formulas (ROFs) are a sub-class of mul-

tilinear circuits where the underlying directed acyclic graph represents a tree and every

iii

input variable is allowed to label only one input node. Multilinear algebraic branching

programs are a sub-class of multilinear circuits that can be represented by a layered

directed acyclic graph such that every path in this graph computes a multilinear polyno-

mial. Read-once oblivious algebraic branching programs (ROABPs) are a sub-class of

multilinear ABPs where input variables are read only once, in a fixed order along every

path.

We study the models of sums of ROFs and ROABPs. We obtain a super-polynomial

separation between the classes of sum of ROABPs and multilinear ABPs. We also

show a lower bound on the size of sum of ROFs computing an explicit polynomial that

can be efficiently computed by a ROABP. We show that multilinear ABPs where every

sub-program reads variables in intervals i.e., reads variables in an order such that their

indices constitute an interval in [1, n] (strict-interval ABPs), are equivalent to ROABPs.

For general arithmetic circuits, Valiant et al. (1983) had shown a similar result i.e.,

a depth of O(log n) is enough for polynomial size circuits to compute polynomials

having polynomial size circuits of unrestricted depth. Later, Agrawal and Vinay (2008)

reduced the depth of the desired shallow circuit to a constant 4, with a blow-up in the

size. Such results require proving a small upper bound on the size of a shallow circuit

for computing any polynomial efficiently computable by circuits of large depth. In

the paradigm of parameterized complexity theory, proving upper bounds are simpler

since the notion of efficiency is polynomial in terms of the input size, multiplied by

any function on an additional parameter k � n (known as fixed parameter tractability

or FPT). We show that the result of Valiant et al. (1983) holds for FPT-size circuits

where the parameter is the degree of the polynomial. However, we show that depth-4

circuits parameterized by the degree k where the top product gate fan-in is restricted

to o(k), exhibit a lower bound of nO(k) on the size for computing a polynomial that

has polynomial size depth-4 degree-parameterized circuits where the top product gate

fan-in is unrestricted i.e., O(k). Thus the result of Agrawal and Vinay (2008) cannot be

adapted to parameterized arithmetic circuits.

We also obtain parameterized lower bounds on the size of multilinear circuit classes

parameterized by degree, for computing an explicit multilinear polynomial of degree k.

We construct two explicit multilinear polynomials of degree k, one of which is com-

putable by a depth-4 circuit of FPT size, parameterized by the degree and the other is

iv

efficiently computable by a sum of three ROFs. We show nΩ(t(k)) lower bounds, where t

is any computable function, on the size of ROABPs, strict-interval ABPs and the model

of sum of ROFs with restricted ordering for computing these explicit polynomials. We

also show a separation between the class of degree-parameterized read-once and read-2

oblivious ABPs, as read-2 oblivious ABPs can efficiently compute the explicit multilin-

ear polynomials of degree-k.

Finally, we study the computational problem of polynomial identity testing or PIT

which is to decide if a given polynomial is identically zero or not. A common tool for

obtaining PIT is a polynomial map known as a hitting-set generator. In Ghosal et al.

(2017), we use a hitting-set generator defined by Shpilka and Volkovich (Shpilka and

Volkovich (2009)) along with some other techniques, to obtain PIT for depth-3 circuits

parameterized by the degree. We show that the same technique cannot be extended

to higher depth circuits parameterized by degree because of the following property: If

an n variate polynomial f has a partition of variables such that the partial derivative

matrix Raz (2009) has large rank then its image under the Shpilka-Volkovich generator

too has large rank of the partial derivative matrix even under a random partition.

We also obtain PIT in the black-box setting using the Shpilka-Volkovich generator

for two multilinear classes. One of them is the occur-once formulas with powering

gates, which resemble ROFs with powering gates between every two gates on a path

in the ROF, and the other is the class of clustered read-2 formulas, which are read-2

formulas such that the lowest level gates computing a read-2 polynomial are a sum of

two ROFs.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF FIGURES ix

ABBREVIATIONS x

NOTATION xi

1 INTRODUCTION 1

2 PRELIMINARIES 20

2.1 Algebraic Computational Models 20

2.2 Parameterized Complexity Theory: Basic Definitions 24

2.3 Parameterized Algebraic Complexity 25

2.4 Lower Bound Techniques and Complexity Measures 28

2.4.1 Partial Derivative Matrix of a polynomial 30

2.4.2 Dimension of Partial Derivatives 33

2.5 Some Explicit Polynomials . 34

3 ON BOUNDED-READ MODELS OF COMPUTATION 37

3.1 Introduction . 37

3.2 Chapter Outline . 38

3.3 Lower Bound on Sum of ROABPs computing DMPY polynomial . 39

3.4 Interval Formulas . 43

3.4.1 Depth Reduction . 44

3.5 Strict-Interval ABPs . 47

3.6 Sum of ROFs . 51

3.6.1 A Hard Polynomial . 51

3.6.2 Rank Upper Bound on ROFs 53

vi

3.7 Conclusion . 57

4 PARAMETERIZED DEPTH REDUCTION AND LOWER BOUNDS 59

4.1 Introduction . 59

4.2 Chapter Outline . 62

4.3 Parameterized Depth Reduction 63

4.4 Parameterized Lower Bound on Depth-5 Powering Circuits 64

4.5 Conclusion . 68

5 PARAMETERIZED LOWER BOUNDS AGAINST MULTILINEAR AL-
GEBRAIC CIRCUITS 69

5.1 Introduction . 69

5.2 Chapter Outline . 70

5.3 Construction of high rank polynomials 71

5.3.1 A full rank polynomial . 72

5.3.2 A high rank sum of three ROFs 78

5.4 Lower bounds . 82

5.4.1 ROABP . 82

5.4.2 Separation Between Read-2 and Read-Once Oblivious ABPs 84

5.4.3 Strict interval ABPs . 86

5.4.4 Rank bound for ROPs by Graph representation 89

5.5 Conclusion . 93

6 ON A GENERATOR BY SHPILKA AND VOLKOVICH 94

6.1 Introduction . 94

6.2 Chapter Outline . 98

6.3 Properties of the Shpilka Volkovich Generator 99

6.4 Application of SV-generator: PIT for small multilinear models . . . 101

6.4.1 PIT for Occur-once formulas with powering gates 102

6.4.2 PIT for Clustered read-2 formulas 105

6.5 SV-generator preserves rank . 109

6.6 Conclusion . 114

7 CONCLUSIONS AND FUTURE DIRECTIONS 115

vii

REFERENCES 118

LIST OF PAPERS BASED ON THESIS 125

CURRICULUM VITAE 126

DOCTORAL COMMITTEE 127

LIST OF FIGURES

1.1 Example of an arithmetic circuit. 2

1.2 General visualisation of depth reduction results. 5

1.3 Polynomial p represented as a black-box. 10

2.1 (a) An arithmetic circuitC with the polynomials computed by each gate
visualised, followed by (b) an example of an arithmetic formula F . . 21

2.2 Example of an algebraic branching program. 23

2.3 Example arithmetic circuit with syndeg values for a root to leaf path. 27

2.4 Standard lower bound method visualised for p = p1 + . . .+ ps. . . . 29

2.5 Partial derivative matrix for a polynomial f =
∑

i,j coeff(mi, sj)misj ,
mi, sj are monomials in variables mapped to Y and Z respectively. 31

4.1 Visualisation of depth reduction results. 61

5.1 Example construction of double coverG′ fromG = (V,E), where V =
{1, . . . , 8}. 79

5.2 Example construction of read-2 oblivious ABP P ′, where V = {1, 2, . . . , 8}
and perfect matchings N1 = {(1, 2), (3, 4), (5, 6), (7, 8)} and N2 =
{(1, 4), (2, 6), (3, 5), (7, 8)}. 85

6.1 Visualisation of the main proof idea for Theorem 19. 111

ix

ABBREVIATIONS

VP Valiant’s P

VNP Valiant’s NP

FPT Fixed Parameter Tractable

PIT Polynomial Identity Testing

ACIT Arithmetic Circuit Identity Testing

ROF Read-once Formulas

ROP Read-once Polynomials

ABP Algebraic Branching Programs

ROABP Read-once Oblivious Algebraic Branching Programs

x

NOTATION

[n] {1, . . . , n}
X Set of variables {x1, . . . , xn}
var(f) Set of variables occurring in polynomial f
rank(M) Rank of the matrix M
rankϕ(f) Rank of the partial derivative matrix of f under the partition ϕ of input variables
[a, b] {a, a+ 1, . . . , b}
[u, v]P Sub-program of ABP P with source node u, terminal node v
〈S〉 The space spanned by the vectors in the set S
dim(V) Dimension of the vector space V

xi

CHAPTER 1

INTRODUCTION

Multivariate polynomials are fundamental objects in mathematics and play an important

role in several areas. Computational problems on polynomials have wide applications

in theoretical computer science. For example, polynomials are used to represent combi-

natorial objects, like graphs, and many results in graph theory are obtained by reducing

problems on graphs to problems on polynomials. In the Reed-Solomon coding scheme,

polynomials represent encoded messages over a communication channel, and the eval-

uations of the polynomial on a set of points form a code-word (Reed and Solomon

(1960)). Thus, the encoding of messages is reduced to the problem of evaluating a

polynomial. Polynomials are also interesting as representations of geometric curves.

Hard problems on polynomials can be used in encryption schemes like elliptical curve

cryptography (Miller (1986), Koblitz (1987)).

Algebraic complexity theory aims at classifying polynomials based on their com-

plexity. A primary measure of complexity for a multivariate polynomial is the number

of primitive algebraic operations (for example, addition and multiplication) required to

obtain the polynomial from the input variables and field elements. Arithmetic circuits

are used as formal models for computing polynomials, where the size of the circuit

represents the number of algebraic operations required to obtain the polynomial. For-

mally, an arithmetic circuit is defined as a directed acyclic graph having input nodes

corresponding to the input variables and constants from the field, internal nodes cor-

responding to sum and product gates computing the sum and product of their inputs,

respectively, and an output gate computing the polynomial represented by the arith-

metic circuit. In this representation, the complexity of the polynomial is represented by

the size or the number of gates in the circuit and depth or the maximum length of a path

from the root node to a leaf node in the circuit. An n-variate degree d polynomial is

said to be efficiently computable if it has an arithmetic circuit of size at most polyno-

mial in the number of input variables, n, computing the polynomial. Figure 1.1 shows

an arithmetic circuit computing the polynomial p = (x1 + x2)(x2 + x3)(x3 + 6).

5x3x2x1

+ + +

× ×

+

p = (x1 + x2)(x2 + x3)(x3 + 6)

Figure 1.1: Example of an arithmetic circuit.

The families of polynomials, (pn)n≥0, of interest are such that for every n, pn is

defined over poly(n) input variables and has degree poly(n). The objective is to clas-

sify families of polynomials in to complexity classes, based on the complexity of the

arithmetic circuits computing them. Valiant, in his seminal work Valiant (1979), intro-

duced the classes VP and VNP of arithmetic computation, analogous to the well-known

boolean complexity classes P and NP. VP is defined as the class of polynomial families

that can be computed by arithmetic circuits of polynomial size. VNP is the class of

polynomial families (pn)n≥0 such that given a monomial in pn, its coefficient can be

efficiently computed (Shpilka and Yehudayoff (2010)).

Polynomial families in VP constitute the notion of efficiently computable in the

context of arithmetic circuits. An important member of this class is the family of the

determinant polynomial on n×n symbolic matrices (i.e., matrices where the entries are

input variables) defined as

detn(x11, . . . , xnn) =
∑
π∈Sn

sgn(π)
∏
i∈[n]

xiπ(i), (1.1)

where sgn(π) denotes the sign of the permutation π. When the entries of the matrix

are field elements, then the determinant polynomial can be efficiently computed using

Gaussian elimination. Mahajan and Vinay (1997) give a construction of a polynomial

size arithmetic circuit computing the determinant polynomial on a symbolic matrix.

Removing the sgn(π) from the Equation 1.1, the family of permanent polynomials

is obtained, which is an important family of polynomials. The family of the permanent

2

polynomial is defined as

permn(x11, . . . , xnn) =
∑
π∈Sn

∏
xiπ(i). (1.2)

Valiant (1979) showed that the permanent polynomial on symbolic matrices of order

n× n is complete for the class VNP. Therefore, the class VNP is also characterised by

the family of the permanent polynomial. Henceforth, whenever there is no ambiguity,

we will refer to families of polynomials as polynomials.

It is clear from the definitions of the classes that VP ⊆ VNP. Valiant conjectured

that the containment of VP in VNP is strict. More specifically, Valiant’s hypothesis can

be stated as VP 6= VNP (Valiant (1979)).

One approach to Valiant’s hypothesis is to prove a lower bound of super-polynomial

size on the class of all arithmetic circuits computing the permanent polynomial. This

question can be generalized as the arithmetic circuit lower bound problem, which asks

the least size required by any circuit from a given class of circuits, C, to compute an

explicitly given polynomial that is assumed to be hard.

Arithmetic Circuit Lower Bounds

Proving lower bounds against the class of all arithmetic circuits is one of the fundamen-

tal problems on algebraic complexity theory. While a simple counting argument shows

that there are polynomials that require exponential size arithmetic circuits, those poly-

nomials are not explicit. The arithmetic circuit lower bound problem is to construct

explicit polynomials that cannot be computed by polynomial size arithmetic circuits.

Till date, the best known lower bound against general arithmetic circuits is only super-

linear i.e., Ω(n log d) for computing the polynomial
∑

i∈[n] x
d+1
i where d + 1 is the

degree of the polynomial (Baur and Strassen (1983)).

Since there has been no improvement in the known lower bounds against general

arithmetic circuits, researchers have considered several restrictions on the class of arith-

metic circuits. Obtaining lower bounds against smaller, restricted classes may yield

techniques that will prove useful in obtaining lower bounds against unrestricted cir-

3

cuits. One such restriction is to consider monotone circuits, i.e., circuits that have no

negative constants from the field as inputs. Jerrum and Snir (1982) have shown an ex-

ponential lower bound against the size of monotone circuits computing the permanent

polynomial. Recently, Yehudayoff (2019) and later, Srinivasan (2019) showed that the

monotone versions of the classes VP and VNP could be separated, by proving an ex-

ponential lower bound against monotone circuits computing a polynomial that can be

efficiently computed by monotone circuits in VNP.

Structural restrictions on circuits seem very natural to consider. Classes of bounded-

depth circuits are particularly interesting because of depth reduction of arithmetic cir-

cuits. The problem of depth reduction is to compute the minimum depth necessary for

an arithmetic circuit of polynomial size such that it has the same computational power

as a polynomial size circuit of unbounded depth. Without a restriction on size, every

polynomial can be computed by a depth-2 circuit that represents the polynomial as a

sum of monomials. When the size of the circuit is restricted to polynomial in the num-

ber of inputs, the task of depth reduction gets interesting. Valiant et al. (1983) showed

that a depth ofO(log n) is enough for computing any polynomial in VP. Later, Agrawal

and Vinay (2008) showed a depth reduction to circuits of depth 4 and sub-exponential

size.

Circuits of constant depth are defined as follows. For k > 0, a depth-k circuit con-

sists of k layers of gates of unbounded fan-in. As the fan-in is unbounded, we assume

that the layers alternate between Σ and Π gates. For example, the class ΣΠΣ consists

of all families of polynomials computable by polynomial size depth three circuits with

the top gate being a Σ gate followed by a layer of Π gates which in turn is followed by

a layer of Σ gates.

The depth reduction by Agrawal and Vinay (2008) reduced the depth of a circuit

of size s = poly(n) and degree d = poly(n) to the constant depth of 4 with sub-

exponential size (2o(d+log n
d

) = 2o(n) size). This result was built on the depth reduction

by Valiant et al. (1983) but is not comparable since their construction of the depth-4

circuit results in a sub-exponential blow-up in size, whereas the construction of the

shallow circuit by Valiant et al. (1983) results only in a polynomial blow-up in size.

This blow-up in size was reduced in the construction of depth-4 circuits from general

polynomial size circuits given by Koiran (2012), followed by Tavenas (2015), who

4

Depth Reduction
size s

degree d
size poly(s, d)
shallow depth

Figure 1.2: General visualisation of depth reduction results.

improved the size of the depth-4 circuit to nO(
√
n) size.

In light of the depth reduction given by Agrawal and Vinay (2008), it is evident that

there is a depth-4 circuit of size nO(
√
n) for every polynomial of degree O(n) in VP.

Thus, a lower bound of sub-exponential (nω(
√
n)) size on depth-4 circuits computing the

permanent polynomial is sufficient to prove Valiant’s hypothesis, since the determinant

polynomial is already known to have a polynomial size unbounded-depth arithmetic

circuit (i.e., a depth-4 circuit of size at most nO(
√
n)) by the result in Mahajan and Vinay

(1997). Consequently, the research community shifted focus to the class of bounded

depth circuits.

In this regard, Gupta et al. (2014) showed a sub-exponential size (2Ω(
√
n)) lower

bound against depth-4 circuits computing both the permanent and determinant poly-

nomials. Their work was an important step towards proving the required 2Ω(
√
n logn)

lower bound against depth-4 circuits computing the permanent polynomial. Kayal et al.

(2014) showed a lower bound of nΩ(
√
n) on the size of depth-4 circuits for computing a

polynomial defined by Nisan and Wigderson (1997). If the Nisan Wigderson polyno-

mial can be shown to be VNP-complete, a lower bound of nω(
√
n) on the size of depth-4

circuits computing it would imply VP 6= VNP, keeping in mind the result of Agrawal

and Vinay (2008).

However, immediately afterwards, Fournier et al. (2014) showed a lower bound

of nΩ(
√
n) on the size of depth-4 circuits computing the iterated matrix multiplication

polynomial using the same proof technique asKayal et al. (2014). Since the iterated

matrix multiplication polynomial is known to have polynomial size circuits, it is evident

that the proof technique would not be useful in separating VP and VNP. In Kumar

and Saraf (2015), Kumar and Saraf (2014), the authors obtain super-polynomial lower

5

bounds against more restricted forms of depth-4 circuits.

In order to prove these results, a standard method of proving lower bounds was

used. To estimate the size of a circuit in a given class that computes an explicit, hard

polynomial, the authors define a complexity measure on polynomials. Subsequently, the

measure is shown to take small values for circuits in the given class of circuits and the

measure is high for the explicitly given hard polynomial (for example, the permanent

polynomial). The well-studied complexity measures are variations of the dimension

of partial derivatives measure of the polynomial, defined by Nisan (1991), who used it

to obtain lower bounds against non-commutative models. These complexity measures

provide useful insight regarding the structure of bounded-depth circuits and are also

useful in proving lower bounds against smaller classes of circuits, which we encounter

in this thesis.

Motivation: Multilinear Models

Since the best known lower bound for general arithmetic circuits is unsatisfactory, and

the lower bounds on the size of constant-depth circuits have not been useful for proving

Valiant’s hypothesis, authors have considered other restrictions on arithmetic circuits

(Raz (2006), Raz and Yehudayoff (2008)).

While most widely studied restrictions such as bounded depth circuits are structural

in nature, researchers have also considered semantic restrictions such as homogeneous

circuits and multilinear circuits. Homogeneous circuits are circuits where all inputs to a

product gate are polynomials of the same degree. However, since it is possible to build

a homogeneous circuit from a non-homogeneous circuit (i.e., homogenize the circuit)

with only a polynomial blow-up in size, homogeneity does not yield interesting, special

cases.

In a multilinear circuit, every gate is assumed to compute a multilinear polynomial

i.e., a polynomial where every input variable has individual degree one. Multilinear

circuits are a natural model for computing multilinear polynomials. As the determi-

nant and permanent polynomials are multilinear polynomials, it is important to study

Valiant’s hypothesis on multilinear circuits.

An important sub-class of multilinear circuits is the class of syntactically multi-

6

linear circuits. In a syntactically multilinear circuit, inputs to every product gate are

polynomials on disjoint sets of variables. Syntactically multilinear formulas are a sub-

class of syntactically multilinear circuits where the underlying directed acyclic graph is

a tree. Raz, in his seminal work Raz (2009) showed a super-polynomial lower bound

against the class of syntactically multilinear formulas computing the permanent and

determinant polynomials. Consequently, Raz (2006) showed a separation between the

classes of multilinear circuits and syntactically multilinear formulas. Raz and Yehu-

dayoff (2008) defined explicit multilinear polynomials and showed size lower bounds

against syntactically multilinear formulas computing both these polynomials.

Algebraic branching programs (ABPs) are a model of computation of polynomials

where the underlying graph is a layered directed acyclic graph. There is a source and

a terminal node in the first and last layers and the intermediate layers contain nodes

that compute the sum of their inputs. Edges between consecutive layers are labelled

by input variables or constants from the field. Every source to terminal path computes

a polynomial that is a product of the labels of the edges in the path. The polynomial

computed at the terminal node is the sum of all the polynomials computed by the source-

to-terminal paths. Multilinear ABPs are ABPs where every path in the ABP computes

a multilinear polynomial. Dvir et al. (2012) showed a super-polynomial separation

between multilinear ABPs and syntactically multilinear formulas.

Further restrictions are applied on multilinear circuits in the quest for good lower

bounds, such that these restrictions provide insight on the source of complexity of multi-

linear circuits. One such restriction is on the number of reads of variables in the formula

i.e., restricting the number of times a variable can occur as a label. While in a circuit, it

can be assumed without loss of generality that a variable occurs at most once as a label,

in the case of a formula, allowing only a bounded number of reads is a restriction.

Formulas where a variable can occur at most once are known as read-once formulas

(ROFs). The class of ROFs has received wide attention in the literature (Shpilka and

Volkovich (2015)). A multilinear polynomial computed by a ROF is called a read-once

polynomial (ROP). A ROF has size at most O(n) as at most n leaves can be labelled

with variables. Thus there is no question of lower bounds against ROFs. However, any

multilinear monomial is a ROP and hence any multilinear polynomial can be expressed

as sum of ROPs. Ramya and Rao (2019b) considered the sum of ROPs as a compu-

7

tational model and proved an exponential lower bound for sum of ROPs computing a

polynomial in VP defined by Raz and Yehudayoff (2008).

Read-once Oblivious ABPs (ROABPs) are layered ABPs such that every variable

labels an edge only once along a path in the ABP, and the edges between two consecu-

tive layers are all labelled by exactly one variable. Nisan (1991) proved an exponential

lower bound against the size of a ROABP computing the palindrome polynomial. More

recently, Kayal et al. (2016) showed a separation between ROABPs and depth-3 multi-

linear circuits by defining a hard polynomial in each class that could not be efficiently

computed by the other. Ramya and Rao (2018) obtained an exponential lower bound

on the size of the sum of ROABPs computing the Raz-Yehudayoff polynomial.

In this thesis, we study different multilinear classes and prove lower bounds against

such classes computing the explicit polynomials defined by Raz and Yehudayoff (2008)

and Dvir et al. (2012).

Motivation: Parameterized Arithmetic Circuits

From the above discussion on lower bounds, it is clear that there has been notable

progress on proving lower bounds on special classes of arithmetic circuits, but the prob-

lem still remains open for unrestricted arithmetic circuits, for which no easy strategy

seems to be available so far. This motivates the necessity of looking into other algorith-

mic paradigms, like the parameterized paradigm, in search of useful tools. Parameter-

ized complexity, defined by Downey and Fellows (1999), is the study of computational

problems where the complexity of problems is expressed in terms of both the input

size n and an arbitrary function of an additional parameter k such that the parameter

is considered to be independent of the input size, k � n. The notion of efficiency in

the parameterized setting, known as fixed parameter tractability is characterised by pa-

rameterized algorithms that run in g(k)poly(n) time, g being an arbitrary computable

function. Henceforth, we will refer to fixed parameter tractability as FPT in this thesis.

The motivation for considering the parameterized paradigm for algebraic computa-

tion arises from graph theory. Koutis and Williams (2009) and Williams (2009) show

that detecting a tree or a path of a given constant length k can be reduced to detecting

the existence of a multilinear monomial in a homogeneous polynomial of degree k de-

8

fined on the graph such that the degree of the polynomial is exactly k. These ideas were

further extended in Amini et al. (2012) to compute the number of proper k-colorings

of a graph. From such results, it is clear that reducing the problem of detecting a graph

theoretic property in a given graph to solving a computational problem on the a poly-

nomial defined from the graph is an efficient and commonly used strategy. Since the

degree of the polynomial, k, is equal to the size of the required structure (i.e., length of

a path or size of a tree) in all these problems, this gives an immediate connection to an

efficient parameterized algorithm for these problems with k as the parameter.

From the perspective of algebraic complexity theory, we ask if depth reduction re-

sults given by Valiant et al. (1983) and Agrawal and Vinay (2008) hold under parameter-

ization. With the allowance of an arbitrary function of the parameter in the complexity,

it is easier to prove an upper bound on the size of a small-depth circuit which would

have the same computational power of a circuit with FPT size and unrestricted depth.

However, we observe that the result of Agrawal and Vinay (2008) does not hold under

parameterization by degree, though the reduction of depth to O(log n) given by Valiant

et al. (1983) still holds.

It is also interesting to investigate if known lower bounds can be strengthened or

generalized by expressing the lower bound problem as parameterized by the degree of

the polynomial. Many lower bounds known in the classical setting, like the result by

Raz (2009), do not yield a large (i.e., greater than FPT) lower bound in the parameter-

ized setting. Hence coming up with explicit constructions of hard polynomials param-

eterized by degree and lower bounds against parameterized classes computing such a

hard polynomial is an interesting task in itself.

Parameterized Computational Problems

Since we have studied parameterized lower bounds, it is interesting to study other com-

putational problems parameterized by the degree in order to get a comprehensive view

of the parameterized algebraic complexity landscape. A natural computational problem

on polynomials is the polynomial equivalence problem, which asks, given two poly-

nomials, whether one is equal to the other. A polynomial can be given as an input in

multiple ways: it can be given as a black-box, such that, given an assignment to the n

9

p p(x1, x2, . . . , xn)

x1

x2

xn

·
·

Figure 1.3: Polynomial p represented as a black-box.

variables, the black-box for a polynomial p gives the evaluation of p on the assignment.

Or the polynomial can be given in the form of an arithmetic circuit computing it, in

which case, the output of every intermediate gate is also known (also called white-box

representation). When these two polynomials are given using the same representation,

this problem is the same as asking whether the difference between the two polynomials

is the zero polynomial, which is known as polynomial identity testing (PIT).

An important motivation for our study of PIT has been the result by Kabanets and

Impagliazzo (2004) that states that an efficient algorithm for PIT on polynomials rep-

resented in the black-box form implies lower bounds for arithmetic circuits. Thus these

computational problems central to algebraic complexity theory, are also connected to

each other.

An efficient randomized algorithm for PIT in the black-box setting was indepen-

dently given by authors hailing from varied scientific perspectives of the problem, start-

ing with the mathematician Ore (1922) and followed by computer scientists Schwartz

(1980), Zippel (1979) and DeMillo and Lipton (1978) respectively. However, with-

out the help of randomness, the PIT problem could be efficiently solved only for very

restricted classes of circuits.

Constant-depth circuits, as seen earlier, are defined such that the top output gate is

always a sum gate. This is because PIT of a depth-k circuit with a top product gate

reduces to solving PIT on its depth-(k − 1) factors i.e., detecting if at least one factor

is a zero polynomial. PIT for depth-3 circuits have been widely studied, where Kayal

and Saxena (2007) gave an efficient algorithm in the white-box setting and efficient

black-box PIT is known only when the top fan-in is bounded, where the increasingly

improved bounds have been given by Kayal and Saraf (2009) and later Saxena and

Seshadhri (2010). In fact these results were the precursor to the discovery of the all-

powerful nature of depth-4 circuits via depth-reduction of circuits. Though there have

been a lot of PIT results on smaller, notably multilinear models, efficient black-box PIT

10

for depth-3 and depth-4 circuits is still unknown.

In the context of parameterized complexity, Chauhan and Rao (2015) gave a degree-

parameterized version of the randomized black-box PIT algorithm given by Schwartz

(1980) and Zippel (1979). The authors reduced the complexity of the algorithm such

that it could be derandomized in FPT-time. Since constant-depth circuits are important

due to existing depth-reduction results and are well-studied for PIT , in Ghosal et al.

(2017) we obtain a FPT-time depth-3 PIT for white-box representation of the polyno-

mial. The simplicity of the algorithm compared to the white-box depth-3 PIT algorithm

in the non-parameterized setting, motivates us to explore parameterized PIT and see if

our techniques for the depth-3 case can be extended to higher depth circuits.

Contributions of this Thesis

In this section, based on the directions mentioned in the previous sections, we go

through our results in this thesis. Motivated by the recent lower bounds on multilin-

ear classes like sum of ROFs (Ramya and Rao (2019b)), ROABPs and strict-interval

ABPs (Ramya and Rao (2019a)), we continue their study of lower bounds on multilin-

ear models on other multilinear circuit classes in the non-parameterized setting (Chap-

ter 3). The classes we consider are restricted in number of times a circuit in the class

can read the variables and the order in which the variables can be read. The hard poly-

nomials we consider are an explicit multilinear polynomial defined by Dvir et al. (2012)

and a variation of the explicit polynomial defined by Raz and Yehudayoff (2008).

Both of these polynomials attain full rank of the partial derivative matrix, a com-

plexity measure that is a variation of the rank of partial derivative matrix given by

Nisan (1991), defined by Raz (2006). However, the polynomial defined by Dvir et al.

(2012) attains full rank only against a special class of partition functions denoted by

arc-partitions, and the rank of the partial derivative matrix against these partitions is

defined as the arc-rank. In our first result, we use the standard lower bound strategy to

show that if a sum of s ROABPs is able to compute the DMPY polynomial, then s must

be large, in this case, sub-exponential in n.

Theorem 1. Let f = f1 + . . . + fs, each fi ∈ F[X] being computable by a ROABP of

size poly(n). If f is the full arc-rank polynomial fD defined by Dvir et al. (2012) then

11

s = exp(ω(n)).

Our proof uses the techniques developed by Dvir et al. (2012) to analyse the effect

of a random arc-partition on a ROABP.

However, it is not clear if the techniques developed by Raz and Yehudayoff (2008)

and Dvir et al. (2012) can be applied to separate further restricted models. For example,

it is not clear if it is possible to separate the class of sum of ROFs from the class of

polynomial size ROABPs.

For such a result, one needs a distributionD on partitions of the input variables such

that a full rank polynomial on all partitions in the support of the distribution is efficiently

computable by a ROABP and any ROF has low rank under a random partition from D.

To this end, we construct a polynomial fPRY computable by ROABPs such that any sum

of ROFs computing it requires exponential size.

Theorem 6. Let f1, . . . , fs be read-once polynomials such that fPRY = f1+f2+· · ·+fs,

then s = 2Ω(n).

Thus our results, along with the lower bound obtained by Dvir et al. (2012), illus-

trate the difference in power among the multilinear models of syntactically multilinear

formulas, ROABPs and read-once formulas.

The models we have considered in our lower bound results are restricted to read the

input variables only once. Other models that we often consider are classes of multilinear

circuits that read variables in an order such that the indices of variables read by any gate

in the circuit form an interval [i, j], i < j. Consider a ROABP P where variables

occur in the order x1, . . . , xn. For any two nodes u, v, the sub-program of P with u

as the source node and v as the terminal node computes a polynomial in the variables

{xi, xi+1, . . . , xj} for some i ≤ j. In other words, for every u, v we can associate an

interval [i, j], i ≤ j of [1, n]. Generalizing ROABPs by using this interval property,

Ramya and Rao (2019a) introduced the model of strict-interval ABPs (see Definition 4

for a formal definition).

Strict-interval ABPs are a sub-class of the interval ABPs model defined and used by

Arvind and Raja (2016), who showed a lower bound against the model. In Chapter 3,

we show that strict-interval ABPs do not have more computational power compared to

ROABPs, i.e.,

12

Theorem 5. The class of strict interval ABPs are equivalent to the class of ROABPs.

As the results obtained in Chapter 3 illustrate lower bounds on very restricted classes

of circuits, and since there has been no progress on lower bound results on general

circuits in recent times, we are interested in exploring a parameterized perspective of

arithmetic circuits. In Chapter 4 we study parameterized depth-reduction of algebraic

circuits parameterized by the degree. Our motivation is that since the relaxed notion of

efficiency in the parameterized paradigm results in the ease of obtaining upper bounds,

it might be possible to obtain better depth-reduction results. We inspect if the seminal

depth-reduction by Valiant et al. (1983) to depth O(log n) holds for circuits parameter-

ized by degree. On adding the factor contributed by the function on the parameter to

the complexity of circuits considered in the depth reduction by Valiant et al. (1983), we

arrive at the following statement:

Any parameterized polynomial family (p, k) in FPT can be computed by circuits of

depth g(k) log n and size g′(k)nO(1), for some functions g and g′ that depend only on

the parameter.

The proof of this statement would follow from the proof of the original statement

itself. A natural next step would be to obtain a parameterized analogue of the depth re-

duction of circuits to constant-depth, given by Agrawal and Vinay (2008), in the param-

eterized context i.e., given a circuit of size g(k) log n and unbounded depth computing

a polynomial p of degree k, if it possible to construct a depth 4 circuit with a reasonable

blow-up in size, computing the same polynomial p. We show that such a statement does

not hold true for the restriction of product gate fan-ins being bounded.

Corollary 2. There is a parameterized family of polynomials (pn)n≥0 that can be com-

puted by ΣΠO(k)ΣΠk circuits of FPT size, but any depth four ΣΠo(k)ΣΠk circuit com-

puting it requires size nΩ(k).

In case of degree-parameterized depth-4 circuits, we show a lower bound against

circuits of top product gate fan-in o(k) computing an explicit polynomial that has FPT

size depth-4 circuit of unrestricted top product gate fan-in. Since depth-4 circuits where

the top product gate fan-in is restricted to o(k) have less computational power than

depth-4 circuits with top product gate fan-inO(k), a depth reduction of circuits to depth-

4 is not possible. Thus the result of Agrawal and Vinay (2008) does not hold for depth-4

13

degree-parameterized circuits. However we don’t know if we can obtain an analogous

depth reduction result for some other constant depth larger than 4, or if a depth reduction

to depth-4 circuits is possible with a different parameterization.

Having explored the possibility of a parameterized depth reduction and studied pa-

rameterized constant-depth circuits, we follow the direction taken by algebraic com-

plexity literature in the non-parameterized setting to proceed to investigate parameter-

ized lower bounds against multilinear algebraic models. In Chapter 5 we define two

multilinear polynomials parameterized by degree, that have high rank under a random

partition. The first polynomial f attains the notion of full rank in the parameterized

setting, g(k)nk/2 (where g is a computable function).

The design of the polynomial f is based on perfect matchings in the complete

graph on 2k vertices, K2k = (V,E). An edge polynomial puv is defined for each

edge (u, v) ∈ E. A polynomial resembling the product of k edge polynomials for the

edges in a perfect matching M represents a degree-2k matching polynomial pM . The

hard polynomial f is formally represented as a parameterized family of polynomials

f = (fn,2k)n>1,2k|n, fn,2k ∈ G[x1, x2, . . . , xn] as follows:

f(x1, x2, . . . , xn) =
∑
M∈M

ζM
∏

(i,j)∼M

(1 + pij(Vi ∪ Vj)),

where ζM are formal variables that are assigned 0/1 values such that the polynomial

f attains close to full rank of the partial derivative matrix. The edge polynomial pij is a

n/k-variate quadratic multilinear polynomial defined as

pij(xi, . . . , xj+n/2k−1) =
∑
k<`

ωk,`xkx`.

Here ωi,j , for 1 ≤ i < j ≤ n/k, are also formal variables. Formally, we have:

Theorem 8. For the parameterized multilinear polynomial family f = (fn,2k)n,k≥0 , we

show,

rankϕ(fn,2k) = Ω

(
nk

(2k)2k

)
,

for every equi-partition ϕ : X → Y ∪ Z and k > 3.

Here, rankϕ(f) is a complexity measure for the polynomial f (see Section 2.4.1

14

for a definition). From the definition of f , it follows that for n, k > 0, fn,2k can be

computed by a ΣΠkΣΠ2 circuit of size kO(k)nO(1).

It is also interesting to investigate if hard polynomials can be constructed from re-

stricted multilinear circuits. Additionally, in view of our interest in construction of hard

polynomials based on perfect matchings, we consider the polynomial defined from the

union of 3 perfect matchings by Kayal et al. (2016), of degree O(n). We were able

to construct a family of degree-parameterized explicit multilinear polynomial based on

the construction of Kayal et al. (2016), which we denote by hn,k for n, k > 0. The

polynomial hn,k also attains close to full rank, and is formally defined as follows.

hn,k(x1, . . . , xn) =
∑
i∈[3]

wi

∏
j∈[k

2
]

∑
(u,v)∈Bij

xuxv

 , (1.3)

where wi are formal variables substituted with 0/1 values to choose one of the

three matching polynomials. The exact value of the rank measure is illustrated in the

following result. When n, k are clear from the context, we denote hn,k by h.

Theorem 9. Let h be the polynomial defined in Equation 1.3. Then there is a constant

c = 23+20ε
114

for a fixed ε > 0 such that for every equi-partition ϕ : X → Y ∪Z, over the

rational function field F(w1, w2, w3) such that,

rankϕ(h) ≥
(n
k

)ck
.

This polynomial can be efficiently computed by a sum of three ROFs. We note that

in the parameterized setting, the full value of the complexity measure is easily achieved

by polynomials computable in an efficient manner by relatively simple i.e., restricted

models, unlike in the non-parameterized case. Hence it is comparatively more difficult

to obtain good (i.e., nO(k)) lower bounds in the parameterized setting than obtaining

exponential lower bounds in the classical setting.

In this chapter, we obtain a nO(k) lower bound against the size of a ROABP com-

puting the polynomial f .

Theorem 10. A ROABP P computing the polynomial family f = (fn,2k) requires size

S = Ω(nk/(2k)2k).

15

A similar lower bound is obtained against the size of a ROABP computing f . Thus

the class of sum of three ROFs contain polynomials that cannot be efficiently computed

by a ROABP, whereas ROFs are notably weaker than ROABPs.

Theorem 11. An ROABP computing the family of polynomials (hn,k)n, k>0 defined in

Equation 1.3 requires size nΩ(k).

A polynomial computed by a parameterized ROABP of FPT size has a FPT sized up-

per bound on the complexity measure, thus yielding strong parameterized lower bounds.

However, with only one more read of the variables allowed in the same order, the com-

plexity increases exponentially.

Theorem 12. The family of polynomials (hn,k)n, k>0 defined in Equation 1.3 can be

computed by read-2 oblivious ABPs of size nO(1).

This gives a wide separation between the parameterized classes of read-once and

read-twice ABPs. This is not surprising since h, a sum of 3 ROFs, attains nearly full

rank, hence ABPs being a stronger model than formulas, should naturally attain full

rank in lesser number of reads.

Corollary 3. There is a parameterized polynomial family computable by polynomial

size read-2 ABPs such that any ROABP computing it has size nΩ(k) where k is the

parameter.

We show a smaller lower bound than ROABPs on the size of parameterized strict-

interval ABPs computing f . The proof proceeds by expressing a strict-interval ABP in

the form of a very structured depth-4 parameterized circuit for which the upper bound

on the complexity measure is small.

We also obtain a good lower bound against the class of sum of ROFs, where the

order in which variables are read is fixed. We state the result formally as follows:

Theorem 14. Let p1, . . . , ps be ROFs where variables are read in a particular order,

such that f = p1 + · · ·+ ps. Then, s = (nΩ(k)/t(k)), where t is a computable function

on k.

We show this by building a graph corresponding to each ROF. We upper bound the

rank measure on each ROF by counting edges in the graph that correspond to monomials

16

in the polynomial that would contribute to high rank. The product of s with this upper

bound gives the upper bound on rank for the sum of ROFs class. As this upper bound

must equal the rank lower bound on f , we obtain a lower bound on the size of the sum,

s.

The investigation on parameterized lower bounds motivates us to examine parame-

terized PIT, since the two problems are related by a result of Kabanets and Impagliazzo

(2004). It is a common technique to use a function known as hitting-set generator to eas-

ily obtain a set of witnesses for the polynomial being non-zero. We consider one such

hitting-set generator defined by Shpilka and Volkovich (2008). This hitting-set gener-

ator yielded a very simple white-box PIT algorithm for depth-3 circuits (Ghosal et al.

(2017)) and is natural and convenient to work with in the parameterized setting. This is

because it transforms any n-variate polynomial of degree k into a k-variate degree-nk

polynomial that is identically zero if and only if the original polynomial is identically

zero, which makes it possible to evaluate the k-variate polynomial on all possible as-

signments in FPT-time to ascertain whether it is a zero polynomial. In Chapter 6, we

extensively study this generator, which we denote by the term SV-generator.

Minahan and Volkovich (2018) gave an elegant characterisation for the SV-generator

Gk acting on a polynomial P which helps in analysing Gk(P), thus helping in design-

ing black-box PIT algorithms. They obtained efficient black-box PIT for the sum of

ROFs using this expression. We use this expression to obtain black-box PIT for two

restricted non-parameterized multilinear models that we define. The first model is that

of a modified read-once formula, where we have arbitrary powering gates between any

two gates (sum or product) in the circuit. We define this model occur-once formula with

powering gates.

Corollary 5. Let f ∈ F[x1, . . . , xn] be a polynomial computed by a polynomial-sized

occur-once formula with powering gates with maximum fan-in p, f is non-constant.

Then G1(f) is also non-constant i.e., a hitting-set generator for f .

We also define the model of clustered read-2 formulas, which is formally defined in

Definition 31. We show:

Theorem 18. G7 is a hitting-set generator for the class of clustered read-2 formulas.

Having observed the effectiveness of the SV-generator for a variety of models, we

17

aimed to extend the depth-3 parameterized white-box PIT to higher depths as a natural

next step. Depth-4 circuits parameterized by degree have relatively higher value of

the rank complexity measure than depth-3. Even obtaining efficient white-box PIT is

difficult for depth-4 circuits, since depth-4 circuits of nO(
√
n) size are computationally

equivalent to unrestricted polynomial size circuits (Tavenas (2015)). A white-box PIT

is not evident using existing results even for the k-variate polynomial Gk(f), where

f is a polynomial having a FPT-size depth-4 parameterized circuit, Gk being the SV-

generator. We observe the reason for this being the SV-generator preserves the rank

complexity measure of a given polynomial P i.e., the polynomial Gk(P) has nearly the

same value of the rank measure as P . We express this result formally in the following

theorem.

Theorem 19. Let f ∈ F[x1, . . . , xn] be a polynomial of degree ≤ k. Let g = G2k(f).

Then,

∃ϕ, rank(Mfϕ) ≥ R =⇒ Prϕ′ [rank(Mgϕ′) = R] ≥ Ω(1/22k),

where the probability is taken over the uniform distribution over the set of all partitions

of the variables in g into two parts of equal size.

Theorem 19 can be extended to a more general class of hitting set generators, which

we denote by SV-like generators. We prove the rank-preserving property for SV-like

generators as follows.

Corollary 6. Let H = (Hn,2t)1≤2t≤n be an SV like hitting set generator such that Hn,2t

is a hitting set generator for degree t polynomials on n variables. Let f = f(x1, . . . , xn)

be any polynomial of degree t/2 and h = H(f). Then,

∃ϕ, rank(Mfϕ) ≥ R =⇒ ∃ϕ′rank(Mhϕ′) ≥ R.

However, this does not rule out other families of hitting set generators from having

the rank-preserving property, neither does it rule out the possibility of depth-4 parame-

terized white-box PIT via other hitting set generators.

Thus our study covers the two fundamental problems of lower bounds and PIT in

algebraic complexity theory and examines the insight provided by parameterized alge-

braic complexity theory regarding the structures of these problems. Parameterization

18

of a problem generalizes it since the complexity can be in terms of any function of the

parameter. Hence, we examine problems in algebraic complexity through a wider lens

provided by the fixed parameter of degree, and illustrate the limitations of the tech-

niques frequently used in the non-parameterized scenario in our parameterized world.

Chapter-wise Overview

• In Chapter 3 we obtain a sub-exponential separation between multilinear ABPs

and ROABPs (Theorem 1) followed by the equivalence of the classes of strict-

interval ABP and ROABP (Theorem 5) and an exponential separation between

the classes of sum of ROFs and ROABPs (Theorem 6).

• In Chapter 4 we show that the depth reduction by Valiant et al. (1983) holds even

for circuits where the product gate fan-ins are bounded by a function of the degree

of the polynomial (Proposition 5) but the depth reduction to depth-4 circuits by

Agrawal and Vinay (2008) does not hold in this setting (Corollary 2).

• In Chapter 5 we obtain parameterized lower bounds against multilinear param-

eterized classes computing two explicit polynomials, one of which is efficiently

computable by a parameterized depth-4 circuit (Theorem 8) and the other is a

sum of three ROFs parameterized by the degree (Theorem 9).

• In Chapter 6 we show the application of SV-generator for obtaining black-box

PIT for occur-once formulas with powering gates (Theorem 16) and clustered

read-2 formulas (Theorem 18). We mainly prove a rank preserving property of

the SV-generator (Theorem 19) and SV-like generators (Corollary 6) because of

which SV-generator cannot be used to yield PIT for constant-depth circuits of

depth larger than 3, parameterized by degree.

19

CHAPTER 2

PRELIMINARIES

In the following sections we establish all concepts and notations used in this document

to explain our results. We begin with a description of the models of computation used

to compute or represent polynomials, followed by basic definitions and concepts used

in the paradigm of parameterized complexity and the different measures of complexity

used in this document to show the relations between the different models of compu-

tation. For a detailed description, the reader is referred to the surveys Shpilka and

Yehudayoff (2010) and Saptharishi et al. (2016) and Downey and Fellows (1999) for

the basic concepts of parameterized complexity theory.

2.1 Algebraic Computational Models

In this section we describe arithmetic circuits, that represent polynomials p(x1, . . . , xn)

over the polynomial ring F[x1, . . . , xn] succinctly, and the complexity measures as-

sociated with them. We denote the set of variables {x1, . . . , xn} by X , degree of a

polynomial p by deg(p) and the set of variables that are inputs to p by var(p).

Arithmetic Circuits An arithmetic circuit is a directed acyclic graph (DAG in short)

with input nodes of in-degree zero labelled by variables in X and constants from the

field F, internal nodes and an output node of out-degree zero, called gates, labelled by

+ or ×. Every internal node g in the circuit computes a polynomial which is either the

sum or the product of its inputs, according to its label. The arithmetic circuit is said to

be computing the polynomial p if the polynomial computed by the output node is p.

The complexity measures associated with an arithmetic circuitC are size(C), which

may denote either the number of gates or the number of edges in the circuit, and

depth(C) which denotes the length of the longest path from any input node to the output

node in the circuit. Figure 2.1(a) shows an arithmetic circuit of size 10 and depth 3.

5x3x2x1

+ + +

× ×

+

p = x3(x1 + x2)(x2 + x3 + 6)

x1 + x2
x2 + x3 + 5

(x1 + x2)x3 x3(x1 + x2)(x2 + x3 + 5)

(a) Arithmetic circuit C

+ + + +

× ×

×

x1 x2 x3 x4 x5 x6 x7 x8

p = (x1 + x2)(x3 + x4)(x5 + x6)(x7 + x8)

(b) Arithmetic formula F

Figure 2.1: (a) An arithmetic circuit C with the polynomials computed by each gate
visualised, followed by (b) an example of an arithmetic formula F .

A class C of circuits is a collection of arithmetic circuits that usually share a common

property. In this section we will go through the definitions of the well-studied special

classes of arithmetic circuits and describe their computational power with respect to

class of all arithmetic circuits. Circuits of constant depth have been widely studied in

the literature Saptharishi et al. (2016). Though we can assume every gate in a general

arithmetic circuit has a constant fan-in (say, fan-in 2), we assume gates in a circuit C

of constant depth have unbounded fan-in, since otherwise, C cannot read all the input

variables.

Arithmetic circuits where the underlying DAG is a tree are known as arithmetic

formulas. Figure 2.1(b) shows an arithmetic formula computing the polynomial p =∏4
i=1(x2i−1 + x2i).

Multilinear circuits A monomial in the polynomial p is denoted by xα1
1 · . . . · xαnn ,

where ∀i, xi ∈ X and αi ∈ F are constants that denote the individual degree of xis. A

monomial is multilinear when ∀i, αi is either 1 or 0. The polynomial p is multilinear if

all its monomials that have non-zero coefficients are multilinear. An arithmetic circuit

C computing p is a multilinear circuit if every gate in the circuit computes a multilinear

polynomial. It is not known whether every multilinear polynomial that can be computed

by a polynomial sized circuit, has a polynomial sized multilinear circuit computing it.

Though multilinearity is a semantic restriction on the circuit, a variant of multilinearity,

syntactic multilinearity has received wide attention as a syntactic restriction on circuits.

A circuit is said to be syntactically multilinear if the inputs to every product gate in

21

the circuit are defined on disjoint sets of variables i.e., if a product gate f is such that

f = g × h, g, h being inputs to the gate f , then var(g) ∩ var(h) = ∅.

We are interested in several restricted classes of arithmetic formulas, especially sub-

classes of syntactically multilinear formulas like read-once formulas (ROF in short) and

interval formulas. We define both of these models here.

Definition 1. (Read-once formulas) A syntactically multilinear arithmetic formula is a

read-once formula if every input variable labels an input node exactly once.

Let g be a gate in a read-once formula F such that g = g1 + g2 or g = g1 × g2,

where g1 and g2 are its inputs. Then the polynomials computed by g1 and g2 are defined

on disjoint sets of variables.

Polynomials computed by ROFs are known as read-once polynomials (ROPs). ROFs

are a proper sub-class of syntactically multilinear formulas.

Read-once formulas can be generalized to read-k formulas where every input vari-

able is read k times i.e., each variable labels at most k input nodes, for a k > 0.

A boolean function f : {0, 1}n → {0, 1} is often represented by a branching pro-

gram P , which is a layered DAGs such that every path represents a full or partial as-

signment to the inputs of f , and the paths either end at the terminal node corresponding

to f(x1, . . . , xn) = 0 or the terminal node corresponding to f(x1, . . . , xn) = 1. Al-

gebraic branching programs (ABPs in short) are algebraic analogues of the boolean

model of computation of branching programs. It is known that the class of ABPs sub-

sumes the class of arithmetic formulas. ABPs and their various interesting sub-classes

are formally defined as below.

Algebraic branching programs An algebraic branching program (ABP) P comput-

ing a polynomial is a layered DAG with each layer containing nodes and edges between

nodes in any two consecutive layers labelled by variables in X and constants from the

field F. Let the layers be L1, . . . , Lr. Then L1, the first layer, contains only the source

node s that has zero in-degree and Lr, the last layer, contains only the terminal node t.

Every path ρ from s to t computes a polynomial pρ =
∏

e∈ρ label(e), where e is an edge

and label(e) denotes the constant or variable labelling e. Every sub-program between

two nodes u, v in P is denoted by [u, v]P =
∑

ρ pρ where ρ is a path from u to v and

22

s t

L0 L1 L2 L3

x1

x2

3x1

5x3

2x2

4
1

x1

4x3

5

p = 8x1x2x3 + 20x2
3x1 + 12x1x3 + 20x2

Figure 2.2: Example of an algebraic branching program.

pρ is the polynomial computed by the path ρ. The polynomial computed by P is [s, t]P .

Figure 2.2 illustrates an example of an ABP.

Complexity measures associated with an ABP P are size(P), which denotes the

number of nodes in P , depth(P) which denotes the number of layers in P and width(P)

which denotes the maximum number of nodes in any layer in P .

We can define syntactically multilinear ABPs as follows:

Definition 2. A syntactically multilinear ABP is one where every input variable labels

an edge at most once along any path from s to t.

We consider several interesting sub-classes of syntactically multilinear ABPs. An

ABP is said to be oblivious if edges between two consecutive layers Li and Li+1 are

labelled by a particular variable xj . We define an important sub-class of syntactically

multilinear ABPs, Read-once Oblivious ABPs, as follows:

Definition 3. A read-once oblivious ABP (ROABP) P is an ABP such that there exists

a fixed ordering π ∈ Sn in which the input variables are read, along every s to t path.

Edges between any two consecutive layers Li, Li+1, i ∈ [0, n] are labelled by the

variable xπ(i) or a constant from the field.

An interval on the set {1, . . . , n} with end-points i, j ∈ [n], can be defined as I =

[i, j], i < j, where I = {` | i, j ∈ [n], i ≤ ` ≤ j}. An interval of variables Xij

is defined such that Xij ⊆ {x` | ` ∈ I, I = [i, j]}, where I is an interval on the

set {1, . . . , n}. For an ordering π ∈ Sn, we define a π-interval of variables, Xij ⊆

23

{xπ(i), xπ(i+1), . . . , xπ(j)}. An interval ABP, defined by Arvind and Raja (2016), is a

syntactically multilinear ABP where each node computes a polynomial defined on an

interval of variables. A restricted form of this model was defined by Ramya and Rao

(2019a), denoted by the term strict-interval ABP, as follows.

Definition 4. (Ramya and Rao (2019a)) A strict interval ABP P is a syntactically mul-

tilinear ABP where we have the following:

1. For any pair of nodes u and v in P , the indices of variables occurring in the sub-

program [u, v]P is contained in some π-interval Iuv called the associated interval

of [u, v]P ; and

2. for any pairs of sub-programs of the form [u, v]P , [v, w]P , the associatedπ-intervals

of variables are disjoint, i.e., Iuv ∩ Ivw = ∅.

It may be noted that in a strict interval ABP, intervals associated with each sub-

program need not be unique. We assume that the intervals associated are largest in-

tervals with respect to set inclusion such that condition 2 in the definition above is

satisfied.

2.2 Parameterized Complexity Theory: Basic Definitions

In this section, we go through some basic concepts of parameterized complexity theory,

as defined by Downey and Fellows (1999) and Flum and Grohe (2006). Since a pa-

rameterized view of algebraic complexity would require us to encounter parameterized

versions of the computational problems in algebraic complexity, like Parameterized PIT

, we first visit the formal definition of parameterized computational problems.

Definition 5. A parameterized problem is a set P ⊆ Σ∗×N, where Σ is a finite alphabet.

If (x, k) ∈ Σ∗ ×N is an instance of a parameterized problem, we refer to x as the input

and k as the parameter.

The notion of parameterized tractability, which is the aim of parameterized algo-

rithm design, is known as fixed parameter tractability (referred to as FPT in this thesis).

Formally, this notion is defined as follows.

24

Definition 6. (Flum and Grohe (2006)) A parameterized problem P ⊆ Σ∗×N is fixed-

parameter tractable if there is a computable function g : N→ N and an algorithm that,

given a pair (x, k) ∈ Σ∗×N, decides if (x, k) ∈ P in at most g(k)poly(n) steps, where

n is the length of input.

FPT is the class of parameterized problems that are fixed-parameter tractable and

similar to the non-parameterized class P it contains all problems for which an efficient

parameterized algorithm is known.

2.3 Parameterized Algebraic Complexity

In this section we define the parameterized view of arithmetic circuits and algebraic

complexity theory in general. For this purpose one must consider different possible pa-

rameterizations of polynomials or arithmetic circuits computing them. It is possible to

study arithmetic circuits with a generic parameter k, as done by Engels in his thesis En-

gels (2016) and later in Bläser and Engels (2019). In Bläser and Engels (2019), the

authors defined parameterized circuit classes with respect to a generic parameter and

defined notions of efficiency and reductions between problems in these parameterized

algebraic classes, akin to the notions in the boolean setting defined by Downey and Fel-

lows (1999). The authors obtained families of polynomials parameterized by a generic

parameter that were complete for the parameterized algebraic classes defined by them.

However, considering arithmetic circuits with a specific parameter that might repre-

sent a property of circuits or polynomials might provide more insight about arithmetic

computation. In this direction, Müller (2008) considered algebraic computational prob-

lems like PIT with an arithmetic circuit given as input, parameterized by number of

input variables, number of product gates along any root to leaf path (i.e., multiplicative

depth) and degree of the polynomial.

Among these, degree of the polynomial seems interesting because it can be used

as a parameter even when the polynomial is given as a black-box. Existing litera-

ture in parameterized algorithms for solving graph theoretic problems, as in Koutis

(2008), Williams (2009), Fomin et al. (2012), also use polynomials parameterized by

the degree, by reducing the graph theoretic problem to a computational problem on the

25

polynomial. We need to inspect if degree of the polynomial is suitable for obtaining

interesting results in parameterized algebraic complexity theory.

A circuit C of FPT size (size g(k)nO(1)) where every gate computes an n-variate

polynomial of degree at most k can compute polynomials where the absolute value of

the coefficient is as large as 22n
O(1)

even when the constants from the field, taken as

input in the circuit, are limited to the set {−1, 0, 1}. In this case, the evaluation of

the polynomial p cannot be done in FPT-time. A more suitable parameter would be

one that takes into account the coefficient size as well. Thus, the syntactic degree of a

polynomial computed by an arithmetic circuit, also known as the formal degree (Kayal

et al. (2014)), is used as a standard parameter for arithmetic circuits. It is defined as

follows:

Definition 7. The syntactic degree of each gate v in an arithmetic circuit Cp computing

a polynomial p ∈ F[X] is denoted by syndeg such that,

syndeg(v) =


1 if v is an input gate

max{syndeg(v1), syntdeg(v2)} if v = v1 + v2

syndeg(v1) + syndeg(v2) if v = v1 × v2

where vi is the polynomial computed at the corresponding gate gi. The syntactic de-

gree of the polynomial p is the syntactic degree of the output gate of Cp, the circuit

computing p.

An arithmetic circuit C is said to be of syntactic degree k if the maximum syntactic

degree of any gate in the circuit C is k. As every constant in a circuit has degree 0

but syntactic degree 1, a circuit of syntactic degree d with constants from {1, 0,−1}

has monomials of degree at most d with the value of coefficients bounded by 2d. Thus,

bounding the syntactic degree of the circuit seems to be a natural restriction on the

circuit and ensures FPT-time computation of a polynomial of degree k. Figure 2.3

illustrates an arithmetic circuit with syntactic degree (syndeg) values visualised for each

gate on a root to leaf path.

Similar to non-parameterized algebraic complexity, parameterized families of poly-

nomials are grouped into parameterized circuit classes, defined as follows.

Definition 8 (Parameterized Circuit classes). A parameterized class of circuits Ck has

26

5x3x2x1

+ + +

× ×

+

p = x3(x1 + x2)(x2 + x3 + 6)

x2 + x3 + 5

x3(x1 + x2)(x2 + x3 + 5)

syndeg = 1

syndeg = 1

syndeg = 3

syndeg = 3

Figure 2.3: Example arithmetic circuit with syndeg values for a root to leaf path.

alternate layers of sum and product gates, with the top gate being a sum gate. The

fan-in of each product gate in the circuit is bounded by g(k), where g : N → N is any

computable function. Here k is the parameter of the circuit or the polynomial computed

by the circuit.

One of the parameterized computational problems encountered in this text is Pa-

rameterized Arithmetic Circuit Identity Testing, or para-ACIT. ACIT is the problem of

testing whether a given arithmetic circuit C computes a polynomial p that is identically

zero. There have been several parameterized variants of ACIT studied in the litera-

ture Müller (2008). However the problem para-ACIT was first studied by Chauhan

and Rao (2015) with the syntactic degree of the arithmetic circuit as a parameter.

Having defined syntactic degree as the parameter, we now define a degree-parameterized

family of polynomials and note its properties.

Definition 9. Let k = k(n). A family (pn)n≥0 of polynomials over F is said to be

degree-k parameterized if

• There is a c > 0 such that pn is an nc variate polynomial for every n ≥ 0;

• Degree of pn is bounded by k = k(n) for every n ≥ 0; and

• The absolute value of the coefficients of pn is bounded by 2g(k)nc , for some func-

tion g that depends only on k.

A degree parameterized polynomial family (p = (pn)n≥0, k) with k = k(n) as

the parameter is said to be fixed parameter tractable if for every n ≥ 0, there is an

27

arithmetic circuit Cn of syntactic degree at most k and of size g(k)nc computing pn

where g is a function of k and c is a constant.

Now, we define the problem of parameterized white-box PIT as para-ACIT.

Problem 1. para-ACIT

INPUT: An n-variate, degree-k parameterized polynomial p, given as an arithmetic

circuit C.

PARAMETER: k

OUTPUT: YES if p ≡ 0.

Chauhan and Rao (2015) have shown the membership of the para-ACIT problem in

W[P]-RFPT, a parameterized class of problems with efficient randomised algorithms,

analogous to the non-parameterized class RP. In Ghosal et al. (2017), we show that

when restricted to depth three circuits, this problem is fixed-parameter tractable.

2.4 Lower Bound Techniques and Complexity Measures

Let us recall the arithmetic circuit lower bound problem formally: Given an explicit n-

variate polynomial f and a circuit class C as input, we want to know the minC∈C size(C),

such that the circuit C computes the explicit polynomial f .

In this section we formally go through the standard method for obtaining lower

bound on arithmetic circuits. The following steps will make the process clear.

A polynomial p computed by any circuit C in the given class of circuits C can be

considered as being made of smaller building block polynomials p1, p2, . . . , ps for some

s > 0, that are also in the class C, where p = p1 + p2 + . . .+ ps or p =
∏s

i=1 pi. Here, s

also denotes the fan-in of the top gate of the circuit C. If we can show that for a circuit

C ∈ C to compute f , s must be large, then we have the required lower bound, since the

total number of gates in the circuit is larger than s.

For this purpose, it is necessary to define a complexity measure on polynomials

(Nisan (1991), Saptharishi et al. (2016)), which we denote by the function µ : F[X]→

R+, such that µ(p) is a positive real value representing the complexity of the polynomial

p. As simple polynomials (for example, linear forms) would take low values for the

28

polynomial p ∈ C

p1 p2 ps· · ·

µ(p) ≤ ∑
i∈[s] µ(pi) ≤ s ·maxi∈[s] µ(pi)

Figure 2.4: Standard lower bound method visualised for p = p1 + . . .+ ps.

measure, so the measure is easy to calculate for such polynomials. Typically, the well-

studied measures considered in the literature have the property that if p = p1 + p2, then

µ(p) ≤ µ(p1) + µ(p2) and if p = p1 · p2, then µ(p) ≤ µ(p1) · µ(p2). These properties

are known as sub-additivity and sub-multiplicativity respectively. Now, in the context

of the circuit class C, we consider a polynomial p that can be computed in polynomial

size by any arbitrary circuit C in C.

If p is such that p = p1 + . . .+ps, then µ(p) ≤ µ(p1)+ . . .+µ(ps) ≤ s ·µ(pi), where

pi has the largest value of the complexity measure, µ(pi). As it is easier to calculate µ

for pi than p, we obtain an upper bound on µ(pi) to yield the upper bound of s · µ(pi)

for any polynomial that can be efficiently computed by a circuit C ∈ C.

Then, if a large lower bound on µ(f) is obtained for the explicitly given polynomial

f , we have s · µ(pi) ≥ µ(f), since f is computed by an arbitrary circuit C in C. From

this expression, it is possible to show that, in order to compute f , s needs to be large.

This lower bound on s then translates to be the lower bound on the size of the circuit C

computing f . Figure 2.4 illustrates the lower bound method for a sub-additive measure

µ.

In case the complexity measure µ is not sub-additive and sub-multiplicative, the

above standard method may not be useful, and a novel method for obtaining lower

bounds will be necessary.

In this thesis, we study multiple complexity measures that are useful for proving

lower bounds. One of the earliest such definitions of complexity measures of polyno-

mials is the rank of the partial derivative matrix of a polynomial.

29

2.4.1 Partial Derivative Matrix of a polynomial

Nisan (1991) defined the partial derivative matrix of a polynomial, considered its rank as

a complexity measure for non-commutative polynomials and proved exponential lower

bounds for the size of non-commutative formulas and ABPs. Raz (2009) considered a

variant of the partial derivative matrix and proved super polynomial size lower bounds

for multilinear formulas. We describe the partial derivative matrix introduced by Raz

(2009) in more detail.

A partition of X is an injective map ϕ : X → Y ∪ Z, where Y and Z are two

disjoint sets of variables such that |X| = |Y ∪ Z|. Let ϕ : X → Y ∪ Z be a partition

and X = X1 ∪X2 where X1, X2 are disjoint sets. Then ϕ |X1 : X1 → Y ∪Z is defined

such that ∀x ∈ X1, ϕ |X1 (x) = ϕ(x).

An equi-partition is a partition ϕ : X → Y ∪ Z such that |Y | = |Z| = |X|/2. For

our convenience, we assume that the number of variables |X| = n is an even number.

We use the partial derivative matrix defined by Raz for polynomials parameterized by

degree, k in Chapter 5.

Definition 10 (Raz (2009)). Let f ∈ F[x1, . . . , xn] be a polynomial of degree k, ϕ :

X → Y ∪Z be a partition of the input variables of f . Then the partial derivative matrix

of f with respect to ϕ, denoted by Mfϕ is an A×B matrix, where the rows are indexed

by the set of all multilinear monomials µ in the variables Y , and columns indexed by

the set of all multilinear monomials ν in the variables in Z, i.e., ., A =
∑k

i=0

(|Y |
i

)
and

B =
∑k

i=0

(|Z|
i

)
.

For monomials µ and ν respectively in variables Y and Z, the entry Mfϕ(µ, ν) is

the coefficient of the monomial µν in f .

Figure 2.5 is an example of a partial derivative matrix for a polynomial f expressed

as fϕ =
∑

i,j coeff(mi, sj)misj under the partition ϕ : X → Y ∪ Z where mi is a

monomial in variables mapped to Y , sj is a monomial in variables mapped to Z.

We modify the definition to include row and column indexing monomials of degree

at most k for proving parameterized multilinear lower bounds in Chapter 5.

For a multilinear polynomial p ∈ F[X] and an equi-partition ϕ, let rankϕ(p) be the

rank of the matrix Mpϕ over F.

30

1 s1s2 . . . sj . . . sb

1
m1
m2
·
·
·
mi

ma

·
· coeff(mi, sj)

MY
(monomials in Y)

MZ (monomials in Z)

Figure 2.5: Partial derivative matrix for a polynomial f =
∑

i,j coeff(mi, sj)misj ,
mi, sj are monomials in variables mapped to Y and Z respectively.

The following fundamental properties of the rank of a partial derivative matrix was

given by Raz (2009).

Lemma 1. Let f, g and h be multilinear polynomials of degree at most k in F[X]. Then,

(Sub-additivity): If f = g + h, then ∀ϕ : X → Y ∪ Z, rankϕ(f) ≤ rankϕ(g) +

rankϕ(h). For var(g) ∩ var(h) = ∅, rankϕ(f) = rankϕ(g) + rankϕ(h).

(Sub-multiplicativity): If f = g × h, ∀ϕ : X → Y ∪ Z, we have rankϕ(f) ≤

rankϕ(g)× rankϕ(h). For var(g)∩ var(h) = ∅, rankϕ(f) = rankϕ(g)× rankϕ(h).

Proof. Let ϕ : X → Y ∪Z be any partition ofX ,A =
∑k

i=0

(|Y |
i

)
andB =

∑k
i=0

(|Z|
i

)
.

Sub-additivity: Suppose thatMgϕ andMhϕ beA×B matrices obtained respectively

from Mgϕ and Mhϕ by adding additional zero entries. Then Mfϕ = Mgϕ + Mhϕ and

hence rankϕ(g + h) ≤ rankϕ(g) + rankϕ(h) as the rank of a matrix is a sub-additive

function.

Additionally, if var(g) ∩ var(h) = ∅, then for any two monomials m1 ∈ F[Y] and

m2 ∈ F[Z], either Mgϕ [m1,m2] = 0 or Mhϕ [m1,m2] = 0. Therefore, rankϕ(g + h) =

rankϕ(g) + rankϕ(h).

Sub-multiplicativity: Let g and h be variable disjoint, var(g) ∩ var(h) = ∅. Let

ϕ|g : Xg → Y1 ∪ Z1, and ϕ|h : Xh → Y2 ∪ Z2, where Xg = var(g), Xh = var(h),

Y = Y1 ∪ Y2, Z = Z1 ∪ Z2. Let, M = Mgϕ|g ⊗Mhϕ|h where ⊗ denotes the tensor

product.

31

Note that each row index of M can be written as m11m12, a product of a multilinear

monomial m11 in variables in Y1, and a multilinear monomial m12 in variables in Y2,

respectively. Similarly, each column index of M can be written as m21m22, a product of

a monomial in variables in Z1,m21 and a monomial in variables in Z2,m22 respectively.

Now, Mfϕ is the sub-matrix of M obtained by removing rows and columns that are

indexed by monomials of degree larger than k. Also, rows and columns of M that are

indexed by monomials of degree larger than k will have no non-zero entries, for, f =

g × h and f is a degree k multilinear monomial. Hence, we conclude that rankϕ(f) =

rankϕ(g) · rankϕ(h).

Rank upper bound for degree-k polynomials

Lemma 2. For any equi-partition ϕ : X → Y ∪ Z, and any multilinear polynomial p

of degree k, we have rankϕ(p) ≤ (k + 2)
(
n/2
k/2

)
.

Proof. Let p ∈ F[x1, . . . , xn] be a degree-k multilinear polynomial. We fix an arbitrary

equi-partition ϕ : X → Y ∪ Z with |Y | = |Z| = n/2.

For d ≤ k letAd be a matrix constructed fromMpϕ such that rows labelled by degree

d monomials in the variables x ∈ X such that ϕ(x) ∈ Y are copied from Mpϕ , and all

other rows correspond to all zero entries. We can now expressMpϕ = A0+A1+· · ·+Ak.

Then by sub-additivity, rankϕ(p) ≤
∑k

d=0 rank(Ad). Since p has degree bounded by

k, all but
(
n/2
k−d

)
columns of Ad are zero columns. Thus rank(Ad) ≤ min{

(
n/2
d

)
,
(
n/2
k−d

)
}.

Substituting these values for rankϕ(p), we have, rankϕ(p) ≤ 2
∑k/2

d=0

(
n/2
d

)
≤ (k +

2)
(
n/2
k/2

)
.

This proof holds for k ≤ n/2. Since in the parameterized domain, k is typically

much smaller than n, the above calculations are sufficient for us.

Coefficient Matrix of a polynomial

In Chapter 6, we modify this measure by Raz to include even non-multilinear monomi-

als as row and column indices of degree at most the degree of the polynomial. We call

this measure the coefficient matrix of a polynomial.

32

Definition 11. Let f ∈ F[x1, . . . , xn] be a polynomial of degree d, ϕ : X → Y ∪ Z

be a partition of the input variables of f . Then the coefficient matrix Mfϕ has its rows

indexed by monomials µ of degree at most d in variables in Y , and columns indexed by

monomials ν of degree at most d in variables in Z. For monomials µ and ν respectively

in variables Y and Z, the entry Mfϕ(µ, ν) is the coefficient of the monomial µν in fϕ.

The fundamental properties of sub-additivity and sub-multiplicativity of the rank of

the coefficient matrix follow directly from the related definition of the Partial Derivative

matrix Raz (2009).

2.4.2 Dimension of Partial Derivatives

The partial derivative matrix considers all possible partial derivatives of the polynomial.

A measure more suitable to polynomials of the form p = Qk
1 + . . . + Qk

s , where all

Qi, i ∈ [s] are low degree polynomials, k is the degree of p and p is computable by a

depth-4 circuit is the dimension of the space spanned by partial derivatives of p, since

this measure increases with the degree of the Qi, i ∈ [s] polynomials.

Definition 12. For a polynomial f ∈ F[X], let ∂=m(f) be the set of all mth order

derivatives of f . The vector space spanned by the polynomials in the set {∂=m(f)} is

the space of partial derivatives of f . The dimension of this space is the dimension of

partial derivatives of f .

This measure is sub-additive and sub-multiplicative since the operation of taking

partial derivatives of a fixed order of a polynomial f has the sub-additivity and sub-

multiplicativity properties. We use this measure in Chapter 4 for proving a lower bound

against depth-5 powering circuits with small top product gate fan-in.

Now that we have gone through the standard approach for proving lower bounds and

the complexity measures used in this thesis, we proceed to inspect the hard polynomials

that are directly used or adapted to construct a different polynomial.

33

2.5 Some Explicit Polynomials

Polynomials that exhibit full rank of partial derivative matrix under all or a huge fraction

of partition functions on input variables can be thought of as high complexity or hard

polynomials. In this section we visit some of the well-known hard polynomials in the

literature which we have also used in obtaining our lower bound results.

Raz and Yehudayoff (2008) defined a multilinear hard polynomial and show a super-

polynomial lower bound against syntactically multilinear formulas computing it. To

define this polynomial we denote an interval {a | i ≤ a ≤ j, a ∈ N}, i, j ∈ N by [i, j],

and consider the sets of variables X = {x1, . . . , x2n}, W = {wi,`,j}i,`,j∈[2n]. We denote

it as the Raz-Yehudayoff polynomial and define it as follows.

Definition 13 (Raz-Yehudayoff polynomial, Raz and Yehudayoff (2008)). Let us con-

sider fij ∈ F[X,W] defined over the interval [i, j]. If the length of the interval [i, j] is

such that |[i, j]| = 1, fij = 0. For |[i, j]| > 0,

fij = (1 + xixj)fi+1,j−1 +
∑

`∈[i+1,j−2]

wi,`,jfi,`f`+1,j,

where, for all `, lengths of [i, `], [` + 1, j] are even and smaller than [i, j]. For all

intervals [i, j] such that i > j, we define fij = 0.

The polynomial f1,2n is defined as the Raz-Yehudayoff polynomial fRY.

Raz and Yehudayoff showed the polynomial fRY to be attaining full rank under a

random partition over the extension field where the variables in W are formal variables.

We formally define their statement as follows.

Proposition 1. (Raz and Yehudayoff (2008)) Let G = F(W) be the field of rational

functions over the field F and the set of variables W . Then the polynomial fRY ∈ G[X]

attains full-rank of the partial derivative matrix, against any partition ϕ ∼ D, where D

is the distribution over all equi-partitions ϕ : X → Y ∪ Z.

Later, Dvir et al. (2012) defined a polynomial that is hard i.e., full rank with respect

to a special class of partition functions, denoted by the term arc-partitions.

Definition 14. (Arcs) Let us identify the set of variables X = {x0, . . . , xn−1} with the

set V = {0, . . . , n−1} of indices. Let us consider the n-cycle graph G = (V,E) where

34

each edge e ∈ E, e = (i, (i + 1) mod n), ∀i ∈ [n]. Then ∀i 6= j in the n-cycle we

denote [i, j] to be the arc from i to j.

Given the above definition of arcs, we can proceed to formally define the construc-

tion of an arc-partition by randomly sampling n/2 disjoint pairs according to a distri-

bution of pairs such that the elements in each pair lie in different partitions of the input

variables.

Definition 15. (Arc partitions) Let us consider a random pairing constructed in n/2

steps in the following manner: Assuming a pairing (P1, . . . , Pt) constructed in t < n/2

steps, where P1 = (0, 1), [Lt, Rt] is the interval spanned by ∪i∈[t]Pi and the random pair

Pt+1 is constructed such that

Pt+1 =


(Lt − 2, Lt − 1) with probability 1/3,

(Lt − 1, Rt + 1) with probability 1/3,

(Rt + 1, Rt + 2) with probability 1/3,

and therefore, [Lt+1, Rt+1] = [Lt, Rt] ∪ Pt+1. Then a pairing (P1, . . . , Pn/2) from the

distribution of pairings D constitutes an arc partition Π where for each Pi = (xj, xk),

either Π(xj) ∈ Y, Π(xk) ∈ Z or Π(xj) ∈ Z, Π(xk) ∈ Y with equal probability.

The uniform distribution on all arc-partitions defined from as above is denoted by

D. Given the above setting, the following definition of the hard polynomial can be seen

to be considering all pairings along the n-cycle.

Definition 16. (DMPY polynomial, Dvir et al. (2012)) The polynomial f̂ , given an

ABP F computing it, is defined as follows:

f̂ =
∑
p∈P

∏
(u,v)=e∈p

λe(xu + xv),

where P is the set of all paths from source s to terminal t in F and λe ∈ F are constants

that take value 0 or 1.

The authors show that for any arc-partition Π sampled fromD uniformly at random,

there is a path p in F such that the polynomial f̂p =
∏

(u,v)=e∈p λe(xu + xv). The poly-

nomial f̂p where p is the path where the edges correspond to pairs in the arc-partition

35

Π, will have full arc-rank. As f̂ =
∑

p∈P f̂p, therefore, by sub-additivity of rank and

because
∏

e∈p λe is distinct for every path p, f is also of full arc-rank. We can set λe = 1

for all edges e ∈ p, where p corresponds to Π, λe is set to zero for all other edges. Let T

be the set of all formal variables λe, e ∈ F . We formally state the full arc-rank property

as follows.

Proposition 2. (Dvir et al. (2012)) The DMPY polynomial f̂ ∈ G[X] has full arc-rank

over the rational function field G = F[T] under any arc-partition Π sampled uniformly

at random from the uniform distribution on all arc-partitions, D.

36

CHAPTER 3

ON BOUNDED-READ MODELS OF COMPUTATION

3.1 Introduction

In this chapter, we consider the well-studied restriction of multilinear models by fix-

ing the order or the number of times input variables are read. The earliest study of

restricted-read multilinear models follows from Nisan (1991), who obtained an expo-

nential lower bound on non-commutative ABPs computing the palindrome polynomial.

However, since ROABPs read every input variable only once along every computational

path, the computation in a ROABP does not make use of commutativity of the product

of variables. Thus, Nisan’s lower bound also holds for this model. Later, Kayal et al.

(2016) obtained a separation between the classes of ROABPs and depth-3 multilinear

circuits. Ramya and Rao (2018) obtain an exponential lower bound against the size of

the sum of ROABPs computing the polynomial defined by Raz and Yehudayoff Raz and

Yehudayoff (2008). The Raz-Yehudayoff polynomial attains full value, which is expo-

nential in n, of the rank of the partial derivative matrix against all possible partitions of

the input variables. The explicitly defined hard polynomial by Dvir et al. (2012), on the

other hand, attains the full value of rank against a distribution of partition functions of

a restricted nature, known as arc partitions. Hence, we are motivated to consider if the

model of sum of ROABPs has the power to efficiently compute the DMPY polynomial.

Prior work on multilinear formulas have been majorly focused on the class of syn-

tactically multilinear formulas, as seen in the articles Raz (2006), Raz (2009). In Ramya

and Rao (2019b), the authors proved an exponential lower bound against the size of the

sum of read-once formulas computing the Raz-Yehudayoff polynomial. Read-k formu-

las are a generalization of the read-once formula model, and it is interesting to study

the difference in computational power between the classes of sum of ROFs and read-k

formulas. We prove an exponential lower bound against the sum of ROFs computing

a hard polynomial that can be efficiently computed by ROABPs and read-k formulas

where k is bounded.

Interval ABPs were defined and studied in Arvind and Raja (2016), who proved an

exponential lower bound against the model, assuming the sum of squares conjecture.

In Ramya and Rao (2019a), the authors defined the more restricted model of strict-

interval ABPs and proved an exponential lower bound against the model computing the

Raz-Yehudayoff polynomial. It is therefore, a natural question to study whether the

model of strict-interval ABPs has the same computational power as ROABPs. We show

that, in fact, strict-interval ABPs denote the same class of circuits as ROABPs.

3.2 Chapter Outline

In Section 3.3, we prove a sub-exponential lower bound on the size of sum of ROABPs

computing the DMPY polynomial.

Theorem 1. Let f = f1 + . . . + fs, each fi ∈ F[X] being computable by a ROABP of

size poly(n). If f is the full arc-rank polynomial f̂ defined by Dvir et al. (2012) then

s = exp(Ω(nε)) for ε > 1/500.

Next, we obtain a depth reduction for the model of interval formulas in Section 3.4.

Theorem 4. Let f ∈ F[X] be a polynomial computed by an interval formula F of size

s and depth d. Then f can also be computed by an interval formula of size poly(s) and

depth O(log s).

In Section 3.5 we show that the class of strict interval ABPs are the same as the

class of ROABPs.

Theorem 5. The class of Strict Interval ABPs is equivalent to the class of ROABPs.

The construction follows from Lemma 6.

Finally, we prove an exponential lower bound on the sum of ROFs computing an

explicit polynomial computable by a polynomial size ROABP in Section 3.6.

Theorem 6. Let f1, . . . , fs be read-once polynomials such that fPRY = f1+f2+· · ·+fs,

then s = 2Ω(n), where the polynomial fPRY is defined as in Equation 3.1.

38

3.3 Lower Bound on Sum of ROABPs computing DMPY

polynomial

In this section we prove a sub-exponential lower bound against the size of sum of read-

once oblivious ABPs computing the hard polynomial constructed in Dvir et al. (2012).

This shows a separation between syntactically multilinear ABPs and sum of ROABPs.

We recall an arc partition Π to be a partition function, Π : X → Y ∪ Z, based

on a pairing (P1, . . . , Pn/2) of the input variables such that, for a pair P = (xi, xj),

ϕ(xi) ∈ Y, ϕ(xj) ∈ Z, or vice versa. Our aim is to give an upper bound on the

maximum rank of ROABPs under an arc partition. We prove the following theorem in

this section:

Theorem 1. Let f = f1 + . . . + fs, each fi ∈ F[X] being computable by a ROABP of

size poly(n). If f is the full arc-rank polynomial f̂ defined by Dvir et al. (2012) then

s = exp(Ω(nε)) for ε > 1/500.

We refer to the rank of the coefficient matrix of the sum of ROABPs against an

arc-partition as the arc-rank. We analyse the arc-rank of the sum of ROABPs against

an arc-partition to give a lower bound on the size of the sum necessary to compute f̂ .

Let us assume n is even. In order to prove the lower bound, we need to estimate

an upper bound on the arc-rank computed by a ROABP. We define the notion of F -arc-

partition, F being a ROABP, as follows:

Definition 17. Let us consider an arc partition Q constructed from a ROABP F in the

following manner: Let the order of variables appearing in the ROABP be xσ(1), xσ(2), . . . , xσ(n),

where σ ∈ Sn is a permutation on n indices. Then, Q = {(xσ(i), xσ(i+1)) | i ∈

[n], i is odd} is a F -arc-partition.

We assume 2K | n. Let S1, . . . , SK be a K-coloring of the variable set X , where

x1, . . . , xn are ordered according to the ROABP. For every i ∈ [K], Si contains the vari-

ables x(i−1)n/K+1, . . . , xin/K according to the ordering on the ROABP. Then S1, . . . , SK

is a K-partitioning of the pairs in the F -arc-partition Q. So pairs in Q are monochro-

matic, whereas the pairs (P1, . . . , Pn/2) on which a random arc-partition Π sampled

from D is based, might cross between two colors.

39

Our analysis for the ROABP arc-rank upper bound follows along the lines of the

analysis for the arc-rank upper bound given by Dvir et al. (2012) for syntactic multi-

linear formulas. For this analysis we define the set of violating pairs for each color c,

Vc(Π), that is defined as:

Vc(Π) = {Πt | |Πt ∪ Sc| = 1, t ∈ [n/2]},

where Π1, . . . ,Πn/2 are pairs in Π. The quantity G(Π) = |{c | |Vc(Π)| ≥ n
1

1000}|,

representing the number of colors with many violations, is similarly defined. We use

the following lemma directly from Dvir et al. (2012):

Lemma 3. Let K ≤ n
1

100 , Π be the sampled arc-partition, and G(Π) be as defined

above. Then, we have,

PrΠ∈D[G(Π) ≤ K/1000] ≤ n−Ω(K).

The following measure is used to calculate the arc-rank upper bound for ROABPs.

Definition 18. (Similarity function) Let ϕ be a distribution on functions S × S → N,

such that S is the support of the distribution on arc-partitions, D. Let P,Q be arc-

partitions sampled independently from D. Then, ϕ(Q,P) : S × S → N is the total

number of common pairs between two arc-partitions Q and P .

We assumeQ to be the F -arc-partition for the ROABP F . For a pair that is not com-

mon between Π and Q, we show both the variables in the pair is in the same partition,

Y or Z with high probability.

Theorem 2. Under an arc-partition Π sampled from D uniformly at random, if p ∈

F[X] is the polynomial computed by a ROABP P , then, for the similarity function ϕ

and δ > 0,

PrΠ∼D[ϕ(Π, Q) ≥ n/2− nδ] ≤ 2−o(n).

Proof Outline: Our argument is the same as Dvir et al. (2012). It is being included

here for completeness for the parameters here being somewhat different than Dvir et al.

(2012).

In order to analyse the number of common pairs counted by ϕ, we consider the K-

coloring of F and show that under a random arc-partition Π, the number of crossing

40

pairs are large in number using Lemma 3. Then, we show, this results in large number

of pairs having both elements in Y . In order to identify the colors with the high number

of crossing pairs, a graphical representation of the color sets is used.

Proof. Dvir et al. (2012) construct the graph H(Π), where each vertex is a color c such

that |Vc(Π)| ≥ n
1

1000 , and vertices c and d have an edge connecting them if and only if

|Vc(Π) ∩ Vd(Π)| ≥ n
1

1500 . We know for any two colors c, d ∈ [K], |Vc(Π) ∩ Vd(Π)| ≤

n
1

1000 . So, by definition of H(Π), the least degree of a vertex in H(Π) is 1. Using this,

Dvir et al. (2012) prove the following claim:

Claim 1. Let the size of the vertex set of H(Π), V (H(Π)), be M . For any subset U of

V (H(Π)) of size N , N ≥M/2− 1, there is some color hj+1, j ∈ [N − 1] such that in

the graph induced on all vertices except {h1, . . . , hj}, the degree of hj+1 is at least 1.

By Claim 1, we have U ⊆ V (H(Π)), U = {c1, . . . , cM/2−1} such that this is the

set of colours having high number of crossing pairs common with colors not in U .

Considering the colors sequentially, given Π, we first examine the pairs crossing from

color c1 to other colors, then c2 and so on. Therefore, to examine the event Ei for color

ci, we have to estimate PrΠ∼D[Ei | E1, . . . , Ei−1,Π].

Here, Ei is the event |Yci − |Sci |/2| ≤ n
1

5000 , equivalently expressed as |Sci |/2 −

n
1

5000 ≤ Yci ≤ |Sci |/2 − n
1

5000 . But for an upper bound, it suffices to analyse the n
1

1500

crossing pairs from Sci to Scj instead of considering the entire set. Let the subset of Yci

constituted by one end of crossing pairs going to color cj be Pij . Each element x in a

crossing pair Pt = (x,w) is a binomial random variable in a universe of size ≥ n
1

1500
=s

with probability 1/2 of being allotted to the subset Y of the universe. This event is

independent of how the ci colored element of other crossing pairs Pt′ are allotted. So,

|Bij| = bj is a hypergeometric random variable where Bij contains all such x ∈ Y . By

the properties of a hypergeometric distribution, Prbj [bj = a] = O(s
−1
2) = O(n

−1
3000),

where a is a specific value taken by the size of Bij .

Applying the union bound over all colors cj for the crossing pairs, and taking b =∑
j∈U\{i} bj , we have:

Prb[s/2− n
1

5000 ≤ b ≤ |Sci |/2− n
1

5000] ≤ 2n
1

5000O(n
−1

3000) = n−Ω(1).

41

Therefore, PrΠ∼D[Ei | E1, . . . , Ei−1,Π] = n−Ω(δ).

We want an upper bound for Pr[|Yc−|Sc|/2| ≤ n
1

5000∀c ∈ [K]]. We have calculated

an upper bound for the colors in [K] that were highly connected to each other in H(Π).

So, we can now estimate the total probability as follows:

Pr[|Yc − |Sc|/2| ≤ n
1

5000∀c ∈ [K]]

= E[n−Ω(G(P)) | G(P) > K/1000] + E[n−Ω(G(P)) | G(P) ≤ K/1000]

= E[n−Ω(G(P)) | G(P) > K/1000] + n−Ω(K) by Lemma 3

≤ n−Ω(K).

If we consider δ = 1/5000, then:

PrΠ∼D[ϕ(Π, Q) ≥ n/2− nδ] ≤ Pr[|Yc − |Sc|/2| ≤ n
1

5000∀c ∈ [K]] ≤ n−Ω(K)

Now, in Lemma 3, K ≤ n
1

1000 .

Hence, PrΠ∼D[rankϕ(M(pΠ)) ≥ 2n/2−n
δ
] ≤ 2−cn

1
1000 logn = 2−o(n).

Now, using the above Theorem 2, we can prove the lower bound on the size of the

sum of ROABP, s.

Proof. (of Theorem 1) Since the polynomial f is such that each multiplicand is of the

form λe(xu +xv), if xu, xv are both mapped to the same partition Y or Z, it will reduce

the rank of the partial derivative matrix by half. Hence, we have the following:

PrΠ∼D[rankϕ(M(fΠ)) ≥ 2n/2−n
δ

] = PrΠ∼D[ϕ(Π, Q) ≥ n/2− nδ],

for some suitable δ > 0.

42

1 = Pr[rank(M(fΠ)) = 2n/2] ≤ Pr[∃i ∈ [s], rank(M((fi)Π)) ≥ 2n/2/s]

≤
s∑
i=1

Pr[rank(M((fi)Π)) ≥ 2n/2/s]

≤
s∑
i=1

Pr[rank(M((fi)Π)) ≥ 2n/2−n
δ

] for some δ > 0

≤ s · n−Ω(n
1

1000)

=⇒ s = 2Ω(n
1

1000 logn) = 2Ω(n
1

500).

Therefore we have a lower bound of 2Ω(nε) for ε ≥ 1/500 on the size of sum of

ROABPs s.

3.4 Interval Formulas

We introduce interval formulas as a generalization of read-once formulas. An interval

on variable indices, [i, j], i < j, is an interval corresponding to the set of variables

Xij ⊆ X = {x1, . . . , xn}, where Xij = {xp | xp ∈ X, i ≤ p ≤ j}. Polynomials are

said to be defined on the interval [i, j] when the input variables are from the set Xij .

When there is no ambiguity, we refer to Xij as an interval of variables [i, j].

This notion of intervals of variables can be extended to permutations on the set of

variables X . For example, let π be a permutation on n elements, then a π-interval

[i, j], i < j is the set of variables {xπ(i), xπ(i)+1, . . . , xπ(j)}.

Gates in a read-once formula F can also be viewed as reading an interval of variables

according to an order π on the variables i.e., there is a permutation π ∈ Sn such that

every gate v in F is a sub-formula computing a polynomial on a π-interval of variables.

Thus, interval formulas are a different generalization of read-once formulas where every

gate v in the formula F reads an interval of variables in a fixed order. We formally define

interval formulas as follows:

Definition 19. (Interval Formulas) An arithmetic formula F is an interval formula if

for every gate g in F , there is an interval [i, j], i < j such that g computes a polynomial

in Xij and for every product gate g = h1× h2, the intervals corresponding to h1 and h2

43

must be non-overlapping.

Thus, if a product gate g in F defined on an interval I = [i, j] takes inputs from

gates g1, . . . , gt, then the gates g1, . . . , gt compute polynomials on disjoint intervals

of variables X1, . . . , Xt corresponding to intervals [i, j1], [j2, j3], . . . , [j2t−2, j] respec-

tively, where ∀p, jp < jp+1 and i ≤ jp ≤ j. If g1, g2, defined on intervals I1, I2 are

input gates to a sum gate g′, then the interval I associated with g′ is I = I1 ∪ I2. This

implies that every gate g in F has an interval Ig ⊆ [1, n] associated with it.

The class of ROFs is weaker than the class of interval formulas, since the polynomial

x1x2 + x2x3 + x1x3 cannot be computed by ROFs but has a small interval formula

computing it. In fact, interval formulas are universal, since any sum of monomials can

be represented by an interval formula.

It is not known if every ROF can be converted to a ROF of logarithmic depth. How-

ever, we argue, in the following section, that interval formulas can be depth-reduced

efficiently.

3.4.1 Depth Reduction

We have the following depth reduction result for general arithmetic formulas given by

Brent (1974), who showed that depth of any arithmetic formula can be reduced by

allowing its size to be increased polynomially.

Theorem 3. Brent (1974) Any polynomial p computed by an arithmetic formula of size

s and depth d, can also be computed by a formula of size poly(s) and depth O(log s).

We know this reduction preserves multilinearity. However, we don’t know if Theo-

rem 3 can be modified to preserve the read-k property. We show that the depth reduction

algorithm given by Theorem 3 preserves the interval property.

Theorem 4. Let f ∈ F[X] be a polynomial computed by an interval formula F of size

s and depth d. Then f can also be computed by an interval formula of size poly(s) and

depth O(log s).

Proof. We know the underlying structure of any arithmetic formula is a tree. The proof

by Brent crucially uses the tree-separator lemma Chung (1989). This lemma guarantees

44

that in any arithmetic formula Φ of size s, along any root to leaf path, there is a node

g such that the sub-formula Φg, rooted at the node g, has size s′ such that s/3 ≤ s′ ≤

2s/3. This node g is the tree-separator node of Φ.

The construction by Brent (1974) proceeds as follows. We replace the gate g by a

new formal variable y. Let the resulting polynomial computed by Φ be f ′(x1, . . . , xn, y),

where f(x1, . . . , xn) = f ′(x1, . . . , xn, g) under the new substitution y = g.

As f ′ is multilinear in y, we can express

f ′(x1, . . . , xn, y) = yf1(x1, . . . , xn) + f0(x1, . . . , xn),

where f0 = f ′ |y=0 and f1 = f ′ |y=1 −f ′ |y=0. By definition, f0, f1 can be computed by

multilinear formulas of size ≤ 2s/3. Now, recursively obtaining small-depth formulas

for f1, f0, we obtain a O(log s) depth formula computing f .

However, the above construction does not necessarily preserve the interval property,

since the intervals of variables on which f1 and g are defined, can be overlapping.

We overcome this problem by expressing f1 as products of polynomials over disjoint

intervals, each of the intervals being disjoint to the interval corresponding to g.

Construction of a depth-reduced interval formula F ′ from F :

We assume, without loss of generality, that the interval formula F corresponds to the in-

terval [1, n]. As the polynomial computed by F is f0 +f1 ·g, the intervals corresponding

to f1 and g must be disjoint. Let the interval corresponding to g be Ig = [i, j], i < j.

Now, by definition of f1 and f0, they are defined on the same interval of variables.

We consider the intervals I0, I1 such that I0 ∪ I1 = [1, n] \ [i, j], I0 = [j + 1, n] and

I1 = [1, i− 1]. We express f1 = f1,1 · f1,0 where f1,1 is a polynomial on the interval I1

and f1,0 is a polynomial on the interval I0.

We consider the root to g (tree-separator node) path ρ in the original formula F con-

taining the node g. All the paths ρ′ that join ρ at a sum gate compute polynomials that

do not get multiplied by g i.e., these polynomials contribute towards the computation

of f0 and not f1. For f1, we will analyse only the paths meeting ρ at product gates. Let

us consider a product gate on ρ computing h1 × h2, such that h2 lies on ρ. Since Ig is

45

contained in the interval corresponding to h2, we claim that the interval corresponding

to h1, Ih1 must be either fully contained in I1 or I0. This is because, by definition of

I0, I1, if Ih1 contains variables from both I0 and I1, then since Ig = [i, j] where i is

greater than any element in I0 and j is smaller than any element in I1, Ig ⊆ Ih1 , which

is not possible.

Constructing an interval formula for f1: We ignore all sum gates on ρ computing

p1 + p2, with p2 on ρ, by substituting p1 to zero. The resulting formula is F ′. For all

product gates on the root to g path ρ, computing h1 × h2, where h2 is on ρ, if Ih1 ⊂ I0,

we substitute each h1 by 1. We also substitute g by 1. The remaining formula F ′1

computes a polynomial f (1) on the interval I1.

For all product gates of the form h1×h2 where h2 is on ρ and Ih1 ⊂ I1, we repeat this

process by substituting h1s and g by 1. This remaining interval formula F ′2 computes a

polynomial f (2) on interval I0.

The polynomials f (1), f (2) are on the disjoint intervals I0, I1 respectively. By the

definition of a product gate in an interval formula, the product gate computing f1 ·g can

thus also be seen as computing f (2) · g · f (1). The size of an interval formula computing

f1 is thus size(F ′1) + size(F ′2), which is at most size(F)− size(Fg).

Constructing an interval formula for f0: We ignore all product gates on ρ comput-

ing h1 × h2, with h2 on ρ, by substituting h1 by 1. We also substitute g by 0. The

resulting formula is F̂ , computing f0, of size at most size(F)− size(Fg).

Hence, we obtain f = f (1) · g · f (2) + f0.

Analysing size of F ′: We know s/3 ≤ size(Fg) ≤ 2s/3. Since size(Ff1) ≤ size(F)−

size(Fg), s/3 ≤ size(Ff1) ≤ 2s/3, where Ff1 is the interval formula computing f1. The

same holds for Ff0 . Thus, the recursive relation for size is as follows: Size(s) ≤

3Size(2s/3) + 2, which will yield size(F ′) ≤ poly(s).

The recursive relation for calculating depth is as follows: Depth(F) ≤ Depth(Fg)+

2 =⇒ Depth(s) = Depth(2s/3)+2, which yields a total depth ofO(log s) for F .

The notion of intervals of variables corresponding to every sub-formula can be ex-

46

tended to ABPs in the form of Strict-Interval ABPs, where every sub-program corre-

sponds to an interval. In a ROABP P that reads variables in the order x1, . . . , xn, any

sub-program of P computes a polynomial in the variables {xi, xi+1, . . . , xj} for some

i ≤ j. Thus, we can associate an interval [i, j], i ≤ j of [1, n] with every sub-program

of P . This property can be generalized to a multilinear ABP where different paths are

allowed to read the variables in different orders, but variables read in every sub-program

of the ABP can be associated with an interval. We define such a multilinear ABP as a

strict-interval ABP, and thus the class of strict-interval ABPs can be perceived as a

generalization of the class of ROABPs.

In the following section, we note that the interval property limits the power of the

multilinear ABP, making it same as the class of ROABPs.

3.5 Strict-Interval ABPs

A strict-interval ABP, defined in Ramya and Rao (2019a) (See Definition 4), is a restric-

tion of the notion of interval ABPs introduced by Arvind and Raja (2016). In the orig-

inal definition given by Ramya and Rao (2019a), every sub-program in a strict-interval

ABP P is defined on a π-interval of variables for some order π, however, without loss

of generality, we assume π to be the identity permutation on n variables. Therefore, an

interval of variables [i, j], i < j here is the set {xi, . . . , xj}. In this section we show

that strict-interval ABPs are equivalent to ROABPs upto a polynomial blow-up in size.

Theorem 5. The class of strict-interval ABPs is equivalent to the class of ROABPs.

The proof of Theorem 5 involves a crucial observation that in a strict-interval ABP,

variables are read in at most two orders and the nodes that correspond to paths that read

in different orders can be isolated. We start with some observations on intervals in [1, n]

and the intervals involved in a strict interval ABP.

Let P be a strict-interval ABP over the variables X = {x1, . . . , xn}. For any two

nodes u and v in P , let Iu,v be the interval of variables associated with the sub-program

of P with u as the start node and v as the terminal node. For two intervals I = [a, b], J =

[c, d] in [1, n], we say I � J , if b ≤ c. Note that any two intervals I and J in [1, n]

are comparable under � if and only if either they are disjoint or the largest element in

47

one of the intervals is hte smallest element in the other. This defines a natural transitive

relation on the set of all intervals in [1, n]. The following is a useful property of �:

Observation 1. Let I, J and J ′ be intervals over [1, n] such that I � J and J ′ ⊆ J .

Then I � J ′.

Proof. Let I = [a, b], J = [c, d] and J ′ = [c′, d′]. As I � J , we have b ≤ c. Further,

since J ′ ⊆ J , we have c ≤ c′ and d′ ≤ d. Therefore, b ≤ c′ and hence I � J ′.

We begin with an observation on the structure of intervals of the sub-programs of

P . Let v be a node in P . We say v is an ascending node, if Is,v � Iv,t and a descending

node if Iv,t � Is,v.

Observation 2. Let P be a strict-interval ABP and v any node in P . Then, v is either

ascending or descending and not both.

Proof. Let I = Is,v and J = Iv,t. Since P is a strict-interval ABP, the intervals I and J

are disjoint and hence either I � J or J � I as required.

Consider any s to t path ρ in P . We say that ρ is ascending if every node in ρ except

s and t is ascending. Similarly, ρ is called descending if every node in ρ except s and t

is descending.

Lemma 4. Let P be a strict interval ABP and let ρ any s to t path in P . Then either ρ

is ascending or descending.

Proof. We prove that no s to t path in P can have both ascending and descending nodes.

For the sake of contradiction, suppose that ρ has both ascending and descending nodes.

There are two cases. In the first, there is an edge (u, v) in ρ such that u is an ascending

node and v is a descending node. Let I = Is,u, J = Iu,t, I
′ = Is,v and J ′ = Iv,t. Since

Ps,u is a sub-program of Ps,v, we have I ⊆ I ′, similarly J ′ ⊆ J . By the assumption, we

have I � J and J ′ � I ′. By Observation 1, we have I � J ′ and J ′ � I ′. By transitivity,

we have I � I ′. However, by the definition of �, I and I ′ are incomparable, which

is a contradiction. The second possibility is u being a descending node and v being an

ascending node. In this case, J � I and I ′ � J ′. Then, by Observation 1, we have

J ′ � I as J ′ ⊆ J . Therefore, J � J ′ by the transitivity of �, a contradiction. This

completes the proof.

48

Lemma 4 implies that the set of all non-terminal nodes of P can be partitioned into

two sets such that there is no edge from one set to the other. Formally:

Lemma 5. Let P be an interval ABP. There exist two strict-interval ABPs P1 and P2

such that

1. All non-terminal nodes of P1 are ascending nodes and all non-terminal nodes of

P2 are descending nodes; and

2. P = P1 + P2.

Proof. Let P1 be the sub-program of P obtained by removing all descending nodes

from P and P2 be the sub-program of P obtained by removing all ascending nodes

in P . By Lemma 4, the non-terminal nodes in P1 and P2 are disjoint and every s to

t path ρ in P is either a s to t path in P1 or a s to t path in P2 but not both. Thus

P = P1 + P2.

Next we show that any strict-interval ABP consisting only of ascending or only of

descending nodes can in fact be converted into an ROABP.

Lemma 6. Let P be a strict-interval ABP consisting only of ascending nodes or only

of descending nodes. Then the polynomial computed by P can also be computed by a

ROABP P ′ of size polynomial in size(P). The order of variables in P ′ is x1, . . . , xn if

P has only ascending nodes and xn, . . . , x1 if P has only descending nodes.

Proof. We consider the case when all non-terminal nodes of P are ascending nodes.

Let ρ be any s to t path in P . We claim that the edge labels in ρ are according to the

order x1, . . . , xn. Suppose that there are edges (u, v) and (u′, v′) occurring in that order

in ρ such that (u, v) is labelled by xi and (u′, v′) is labelled by xj with j < i. Let

I ′ = Is,u′ and J ′ = Iu′,t. Since i ∈ I ′, j ∈ J ′ and I ′ ∩ J ′ = ∅, it must be the case that

J ′ � I ′ and hence u′ must be a descending node, a contradiction. This establishes that

P is an one ordered ABP. By the equivalence between one ordered ABPs and ROABPs

(Jansen (2008), Jansen et al. (2010)), we conclude that the polynomial computed by P

can also be computed by a ROABP of size polynomial in the size of P .

The argument is similar when all non-terminal nodes of P are descending. In this

case, we have i < j in the above argument and hence I ′ � J ′, making u′ an ascending

node leading to a contradiction. This concludes the proof.

49

A permutation π of [1, n] naturally induces the order xπ(1), . . . , xπ(n). The reverse

of π is the order xπ(n), xπ(n−1), . . . , xπ(1). Since branching programs are layered, any

multilinear polynomial computed by a ROABP where variables occur in the order given

by π can also be computed by a ROABP where variables occur in the reverse of π.

Observation 3. Let P be a ROABP where variables occur in the order induced by a

permutation π. The polynomial computed by P can also be computed by a ROABP of

same size as P that reads variables in the reverse order corresponding to π.

Proof. Let P ′ be the ROABP obtained by reversing the edges of P and swapping the

start and terminal nodes. Since P is a layered DAG, there is a bijection between the set

of all s to t paths in P and the set of all s to t paths in P ′, where the order of occurrence

of nodes and hence the edge labels are reversed. This completes the proof.

The above observations immediately establish Theorem 5.

Proof of Theorem 5. Let P be a strict-interval ABP of size S computing a multilinear

polynomial f . By Lemma 5 there are strict interval ABPs P1 and P2 such that P1 has

only ascending non-terminal nodes and P2 has only descending non-terminal nodes

such that f = f1 + f2 where fi is the polynomial computed by Pi, i ∈ {1, 2}. By

Lemma 6 and Observation 3, f1 and f2 can be computed by a ROABPs that read the

variables in the order x1, . . . , xn. Then f1 + f2 can also be computed by an ROABP. It

remains to bound the size of the resulting ROABP. Note that size(Pi) ≤ S. A ROABP

for fi can be obtained by staggering the reads of Pi which blows up the size of the ABP

by a factor of n (Jansen (2008), Jansen et al. (2010)). Therefore size of the resulting

ROABP is at most 2nS ≤ O(S2).

Using Theorem 5, we can design the following white-box PIT for strict-interval

ABPs.

Corollary 1. Given a strict-interval ABP P of size s, we can check whether the poly-

nomial computed by P is identically zero in time O(poly(S)).

Proof. The proof follows from Theorem 5 and the polynomial time white-box PIT algo-

rithm given by Raz and Shpilka (2005) for non-commutative ABPs, since the variables

in X are read only once, in a fixed order, in a ROABP.

50

Now, since we observed that reading once in a particular order in an ABP is the

same as reading intervals of variables along every path and in every sub-program, it

is interesting to inspect if we can obtain good lower bounds against ROABPs. It is

known that the class of read-once formulas is contained in the class of ROABPs. It is

interesting to investigate whether ROABPs have more computational power than a sum

of read-once formulas.

3.6 Sum of ROFs

Ramya and Rao (2019b) show an exponential lower bound on the sum of read-once for-

mulas computing the Raz-Yehudayoff polynomial, that can be efficiently computed by

multilinear circuits (Raz and Yehudayoff (2008)). Kayal et al. (2016) show a separation

between ROABPs and depth-3 multilinear circuits. In this context, the relation between

the classes of ROABPs and the sum of ROFs model is necessary to complete a part of

the picture.

In this section, we show an exponential lower bound on the sum of ROFs against

a hard polynomial that is efficiently computable by a ROABP. This hard polynomial is

defined as the product of Raz-Yehudayoff polynomials on disjoint partitions of the set

of input variables, X .

3.6.1 A Hard Polynomial

Let X = {x1, . . . , xn} be the set of input variables of the hard polynomial such that

4 | n. The Raz-Yehudayoff polynomial fRY (Raz and Yehudayoff (2008)) is defined on

a set of even number of variables where there is a natural ordering on the indices of the

variables. We revisit the definition of this polynomial as stated in Chapter 2. Given that

an interval {a | a, i, j ∈ N, i ≤ a ≤ j} is denoted by the notation [i, j], and the sets of

variables X = {x1, . . . , x2m}, W = {wi,`,j}i,`,j∈[2m], the Raz-Yehudayoff polynomial

is as follows.

Definition 13. (Raz and Yehudayoff (2008)) Let us consider fij ∈ F[X,W] defined

over the interval [i, j]. If the length of the interval [i, j], |[i, j]| = 1, fij = 0. For

51

|[i, j]| > 0,

fij = (1 + xixj)fi+1,j−1 +
∑

`∈[i+1,j−2]

wi,`,jfi,`f`+1,j,

where we assume without loss of generality, lengths of [i, `], [` + 1, j] are even and

smaller than [i, j]. We define f1,2m as the Raz-Yehudayoff polynomial fRY(X).

We use fRY(X ′) to denote the Raz-Yehudayoff polynomial defined on the variable

set X ′ of even size, where X ′ is an arbitrary subset of X .

Let r = Θ(1) be an integer factor of n such that r and n/r are both even. For

1 ≤ i ≤ n/r, let Bi be the variable set {x(i−1)r+1, . . . , xir} and B denote the partition

B1 ∪B2 ∪ · · · ∪Bn/r of X . The hard polynomial fPRY is defined as follows.

fPRY = fRY(B1) · fRY(B2) · · · fRY(Bn/r). (3.1)

By definition of the polynomial fPRY, it can be computed by a constant-width ROABP

of polynomial size as well as by a polynomial size depth three ΠΣΠ syntactic multilin-

ear circuit.

In order to prove a lower bound against a class of circuits computing the polynomial

fPRY, we consider the complexity measure of the rank of partial derivative matrix. Like

in Raz (2006) and many follow-up results, we analyse the rank of the partial derivative

matrix of fPRY under a random partition. The reader might have already noticed that

there are equi-partitions under which the rankϕ(fPRY) = 1. Thus, we need a different

distribution on the equi-partitions under which fPRY has full rank with probability 1.

In fact, under any partition ϕ, which induces an equi-partition on each of the variable

blocks Bi, we have rankϕ(fPRY) = 2n/2, i.e., full rank. We define DB as the uniform

distribution on all such partitions. Formally, we have:

Definition 20. (Distribution DB) The distribution DB is the distribution on the set of all

equi-partitions ϕ̂ of X obtained by independently sampling an equi-partition ϕi of each

variable blocks Bi, for all i such that 1 ≤ i ≤ n/r. We express ϕ̂ as ϕ̂ = ϕ1 ◦ . . .◦ϕn/r.

For any partition ϕ in the support of DB, we argue that the polynomial fPRY has full

rank:

Observation 4. For any ϕ ∼ DB, rankϕ(fPRY) = 2n/2 with probability 1.

52

Proof. Let us fix an equi-partition function ϕ̂ ∼ DB, ϕ̂ : X → Y ∪ Z. Let t = r.

Considering fRY(X ′) where |X ′| = t and t is even, we can prove the partial derivative

matrix of fRY(X ′) has rank 2n/2 under ϕ̂ by induction on t. By definition of fRY, for

t = 2 we have fRY = 0.

So, for the higher values of t, we see the term (1 + x1xt) and f2,t−1 are variable

disjoint, where (1 + x1xt) has rank ≤ 2, and by the induction hypothesis, f2,t−1 has

rank 2t/2−1. Also, by induction hypothesis, for any `, the ranks of partial derivative

matrices of f1,` and f`+1,t are 2`/2 and 2(t−`)/2 respectively.

When ϕ̂(x1) ∈ Y and ϕ̂(xt) ∈ Z, we set w1,`,t = 0 for all ` ∈ [2, t − 1] and

rankϕ̂(f1,t) = rankϕ̂(1 + x1xt) · rankϕ̂f2,t−1 = 2 · 2(t/2−1) = 2t/2. When ϕ̂(x1) ∈ Y

and ϕ̂(xt) ∈ Y , for an arbitrary ` ∈ [t] we set w1,`,t = 1 and we have rankϕ̂(f1,t) =

rankϕ̂(f1,`) · rankϕ̂(f`+1,t) = 2t/2, since ϕ̂ is an equi-partition.

By sub-additivity of rank, and since Bi, i ∈ [n/r] are disjoint sets of variables, we

have rankϕ̂(fPRY) =
∏

i∈[n/r] rankϕ̂(fRY(Bi)) =
∏

i∈[n/r] 2t/2 = 2tn/2r = 2n/2.

3.6.2 Rank Upper Bound on ROFs

In the following, we argue that the polynomial h cannot be computed by sum of ROFs

of sub-exponential size. More formally,

Theorem 6. Let f1, . . . , fs be read-once polynomials such that fPRY = f1+f2+· · ·+fs,

then s = 2Ω(n).

We use the method of obtaining an upper bound on the rank of partial derivative ma-

trix for ROFs with respect to a random partition developed by Ramya and Rao (2019b).

Though the argument in Ramya and Rao (2019b) works for an equi-partition sampled

uniformly at random, we show their structural analysis of ROFs can be extended to

the case of our distribution DB. We begin with the notations used in Ramya and Rao

(2019b) for the categorisation of the gates in a read-once formula F . (In this categori-

sation, the authors have only considered gates with at least one input being a variable.)

• Type- A: These are sum gates in F with both inputs variables in X .

• Type- B: Product gates in F with both inputs variables in X .

53

• Type- C: Sum gates in F where only one input is a variable in X .

• Type- D: Product gates in F where only one input is a variable in X .

Thus, type-D gates compute polynomials of the form h · xi where xi ∈ X, h ∈

F[X \ {xi}] are the inputs to the type-D gate. Let a, b, c, d be the number of gates of

type-A, B, C and D respectively. Let a′′ be the number of Type A gates that compute a

polynomial of rank 2 under an equi-partition ϕ, and a′ be the number of Type-A gates

that compute a polynomial of rank 1 under ϕ such that a = a′ + a′′.

The following lemma is an adaptation, for our distribution DB, of the same lemma

for the distribution of all equi-partitions on n variables from Ramya and Rao (2019b).

Lemma 7. Let f ∈ F[X] be an ROP, and ϕ be an equi-partition function sampled

uniformly at random from the distributionDB. Then with probability at least 1−2−Ω(n),

rankϕ(Mf) ≤ 2n/2−Ω(n).

Proof. We first argue a rank upper bound for an arbitrary fi. Let Φi be the formula

computing fi with gates of the types described as above. Let ϕ̂ = ϕ1 ◦ . . . ◦ ϕn/r
sampled from the distribution DB uniformly at random.

We use the Lemma 3.1 from Ramya and Rao (2019b) which concludes that type-D

gates do not contribute to the rank of a ROF.

Lemma 8. (Ramya and Rao, 2019b, Lemma 3.1) Let F be a ROF computing a read-

once polynomial f and ϕ : X → Y ∪ Z be an partition function on n variables. Then,

rankϕ(f) ≤ 2a
′′+ 2a′

3
+ 2b

3
+ 9c

20 .

Intuitively, Lemma 8 can be applied to a ROF F under a distribution ϕ̂ ∼ DB as

follows. If there are a large number of type D gates (say αn, for some 0 ≤ α < 1), then

for any such equi-partition ϕ̂, rankϕ̂(f) ≤ 2(1−α)n/2. A type C gate, too, contributes a

small value (at most 2) to the rank compared to gates of types A and B. Thus, without

loss of generality, we assume that the number of type C and D gates is at most αn. Now

our analysis proceeds as in Ramya and Rao (2019b), only differing in the estimation of

a′′, a′ under an equi-partition ϕ̂ ∼ DB.

Let (P1, . . . , Pt) be a pairing induced by the gates of types A and B (i.e., the two

inputs to a gate of type A or B form a pair). There can be at most n/2 pairs, but since we

54

have αn gates of type C and D for some 0 ≤ α < 1, we assume (1−α)n remaining type

A and B gates. Therefore, for t = (n − αn)/2, t ≤ n/2, we have the pairs P1, . . . , Pt

induced by the type A and B gates in Φi.

Now, considering the division of X into B1, . . . , Bn/r, we can divide the pairs into

two sets depending on whether a pair lies entirely within a block Bi, i ∈ [n/r] or the

pair has its members in two different blocks Bi and Bj for i, j ∈ [n/r], i 6= j. We

define these two sets as W = {Pi | Pi = (x, y),∃`, x, y ∈ B`} for pairs lying within

blocks and A = {Pi | Pi = (x, y),∃j, k, j 6= k, x ∈ Bj, y ∈ Bk} for pairs lying

across blocks, where x, y are two arbitrary variables in X .

Each pair Pi can be monochromatic or bichromatic under the randomly sampled

equi-partition ϕ̂ with the probability 1
2
. Presence of monochromatic edges will give us

a reduction in the rank of fi under ϕ̂. The analysis on W and A is done separately as

follows.

Analysing W , |W | > t/2: Let Bi1 , . . . , Bi` be the blocks containing at least one pair

from W , ` ≤ n/r. We want to estimate ` and count how many of these ` blocks have at

least one monochromatic pair under ϕ̂ from W .

For each Bi, i ∈ [t], we define the Bernoulli random variable Xi such that,

Xi =

1, if ∃P ∈ W, P = (x, y), x, y ∈ Bi,

0, otherwise.

Let Pr[Xi = 1] = Pr[∃P ∈ W, P = (x, y), x, y ∈ Bi] = ε, for some ε > 0.

Then we have E[Xi] = ε, and for X = X1 + . . . + Xn/r, E[X] = ε · n/r. By the

Chernoff’s bound defined in Mitzenmacher and Upfal (2005), we have,

Pr[X > 2εn/r] < exp(
−εn
3r

).

55

Now we estimate ε as follows:

ε = Pr[Xi = 1] = Pr[∃P ∈ W, P = (x, y), x, y ∈ Bi]

= Pr[x, y ∈ Bi|∃P ∈ W, P = (x, y)]

=
Pr[x, y ∈ Bi]

Pr[∃P ∈ W, P = (x, y)]

≥ Pr[x, y ∈ Bi] since Pr[∃P ∈ W, P = (x, y)] ≤ 1

=
1

r2
.

Therefore, Pr[X > 2εn/r] < exp(−εn
3r

) ≤ exp(−Ω(n)), when r is a constant. This

implies that at least 2/r2 fraction of the blocks have a pair entirely within them with

probability 1− exp(−Ω(n)) and each of these pairs is monochromatic under ϕ̂ with the

constant probability 1/2. This gives an upper bound on the rank of fi,

rankϕ̂(fi) ≤ 2n/2−n/r
3

= 2n/2−Ω(n).

Analysing A, |A| > t/2: Since each pair of variables in A lies across two blocks,

we create a graph G = (V,E) where each vi ∈ V represents the block Bi and E =

{(vi, vj) | (x, y) ∈ A, x ∈ Bi, y ∈ Bj, i 6= j}.

The graph G has maximum degree r since there can be at most r pairs with one

member in a fixed block Bi. If the edges in E form a perfect matching M ′ in G, then

under ϕ̂, the edges in E can be either bichromatic or monochromatic. We need to show

there will be sufficient number of monochromatic edges to give a tight upper bound for

rankϕ̂(fi).

By a result in Biedl et al. (2004), any graph with maximum degree r has a maximal

matching of size m/(2r − 1), where |E| = m. Since |A| ≥ t/2, m ≥ t/2 and hence

the maximal matching is of size t/2(2r − 1) = Ω(n) when r is a suitable constant.

With probability 1/2, an edge in the maximal matching is bichromatic. Hence, ≤ t/2

number of the edges in the maximal matching are bichromatic with probability 1/2t/2 =

O(exp(n−1)). So, with the high probability of 1 − O(exp(n−1)), more than half of the

edges in the maximal matching are monochromatic, thus giving us the rank bound,

rankϕ̂(fi) ≥ 2n/2−t/2 = 2n/2−Ω(n).

56

Given an upper bound on the rank of ROFs under a random partition from DB, we

now proceed to prove the Theorem 6 by showing a lower bound on the size of ROFs

computing our hard polynomial h.

Proof. (Proof of Theorem 6) By Observation 4, the upper bound on the rank of ROFs

given by Lemma 7 and the sub-additivity of rank, we have:

s · 2n/2−Ω(n) ≤ 2n/2 =⇒ s = 2Ω(n).

3.7 Conclusion

In this chapter, we study the models of sum of ROABPs and sum of ROFs and obtain

lower bounds against them. From the lower bound against the sum of ROABPs model,

it is clear that the sum of ROABPs model is weaker than the syntactically multilinear

formulas, since Dvir et al. (2012) obtain a super-polynomial (nΩ(logn)) lower bound on

the size of syntactically multilinear formulas computing the same polynomial, against

which we show a lower bound of 2ω(n) on the size of the sum of ROABPs computing it.

It would be interesting to see if a similar or larger lower bound can be obtained against

read-k formulas, for some k > 1, computing the hard polynomial defined by Dvir et al.

(2012).

The characterisation of strict-interval ABPs by a ROABP raises the question if a

similar characterisation of interval ABPs can be obtained in the form of a sum of

ROABPs. Similarly, it is not known if an interval formula can be expressed as a sum of

ROFs.

The lower bound on the sum of ROFs against ROABPs motivates the question of a

lower bound on sum of ROFs computing a polynomial efficiently computable by read-k

formulas for some k > 1.

Though these questions, if answered, will give us a clearer view of the landscape

57

of sub-classes of multilinear circuits, we are interested in generalizing the lower bound

problem by considering it from a parameterized point of view. For this purpose, we first

consider the possibility of efficient depth reduction results for parameterized arithmetic

circuits, which we consider the following chapter.

58

CHAPTER 4

PARAMETERIZED DEPTH REDUCTION AND

LOWER BOUNDS

4.1 Introduction

The problem of depth reduction is to find the minimum depth necessary in an arithmetic

circuit in order to compute the polynomials in the class VP i.e., polynomials that have

polynomial size circuits, by incurring a small blow-up in the size of the circuit. Such

a result is important since the depth of an arithmetic circuit C computing a polynomial

f represents the maximum amount of sequential computation necessary to compute f .

The first depth reduction result was by Valiant et al. (1983), who showed that only a

depth of O(log n) is necessary to compute all polynomials in VP. More formally, we

have:

Proposition 3. (Valiant et al. (1983)) If a homogeneous polynomial f of degree d is

computed by a circuit of size s, then there exists a homogeneous circuit computing

f , of size poly(s, d) and depth O(log d), such that add gates in the circuit are allowed

unbounded fan-in, and product gates have fan-in 5.

This implies that for every arithmetic circuit C of arbitrary depth and polynomial

size there is a circuit C ′ of depth bounded by O(log n) (assuming degree d = nO(1))

having the same computational power, such that C ′ is not much larger in size. The

method of obtaining this seminal result is simple and elegant. The circuit C is viewed

in two parts i.e., C is cut at degree d/2 into a top half Ct having gates computing poly-

nomials of degree≥ d/2 as leaves, and a bottom half, Cb. The polynomial computed by

the circuit C, say f , is expressed as a small sum of products of polynomials computed

by the leaves of Ct by bounding the fan-in of product gates.

As the polynomial f of degree d is now represented by a sum of product of degree

d/2 polynomials, the authors repeat the same process with the degree d/2 polynomials

and so on. Thus, they are able to obtain a recurrence relation that expresses depth of a

circuit with parameter d as a linear function of the depth of a circuit with parameter d/2.

Therefore, the circuitC can be parallelized to a depth logarithmic in d. The construction

of the depth-reduced circuit C ′ also fixes the fan-in of each product gate to the constant

5 and preserves the homogeneity of the original circuit C. This result implies that the

task of proving arithmetic circuit lower bounds against arithmetic circuits is reduced to

proving lower bounds against the class of O(log d) depth circuits.

The result by Valiant et al. (1983) was followed by a number of lower bound results

against constant-depth circuits. The earliest such result was the super-polynomial lower

bound shown by Nisan and Wigderson against depth-3 circuits, using the measure of

dimension of the space spanned by partial derivatives of the given class of polynomials.

This was followed by the lower bounds against depth-3 circuits shown by Grigoriev and

Karpinski (1998) and later on, Grigoriev and Razborov (2000), against computing the

permanent and determinant polynomials. Both of these works used the dimension of

partial derivatives as the measure.

Following the lower bound results, there were multiple results in construction of

efficient deterministic PIT algorithms. The first such work was the black-boxPIT algo-

rithm given by Klivans and Spielman (2001) for sparse polynomials, i.e., polynomials

computed by depth-2 circuits of polynomial size. Dvir and Shpilka (2007) gave a de-

terministic quasi-polynomial time PIT for restricted depth-3 circuits of bounded top

fan-in. In Dvir and Shpilka (2007), the restriction on the depth-3 circuit was a bound

on the rank of the linear forms computed by the depth-2 gates. Their result was subse-

quently improved by Kayal and Saxena (2007), Saxena and Seshadhri (2010).

The literature on constant-depth circuits implied that obtaining efficient PIT algo-

rithms and strong lower bounds against circuits of bounded depth might be difficult.

Hence, it could be safely assumed that these classes of constant-depth circuits held con-

siderable computational power. This insight motivated Agrawal and Vinay (2008) to

study if depth of a given unrestricted arithmetic circuit could be reduced to a constant,

and they discovered that circuits of depth-4 and sub-exponential size indeed had the

same computational power as circuits of unbounded depth and polynomial size. Their

result is stated formally as follows.

Proposition 4 (Agrawal and Vinay (2008)). If a n-variate polynomial p of degree d

60

[VSBR83]

[AV08],

[Koi12], [Tav15]

size s,

degree d,
depth

unbounded

size poly(s, d)
depth O(log d)

size 2
√

n log d log s

depth 4

Figure 4.1: Visualisation of depth reduction results.

is computed by an arithmetic circuit C of size 2o(n) and unbounded depth, then there

exists a circuit C ′ of size 2o(n) and depth-4 computing it.

The result by Agrawal and Vinay (2008) implies that for any arithmetic circuit C

of polynomial size, the equivalent depth-4 circuit C ′ is of sub-exponential size. Hence,

with a larger blow-up in size than the construction given by Valiant et al. (1983), but a

constant depth of 4, the depth-reduced circuit C ′ has the same computational power as

an unbounded depth circuit. This blow-up in size was subsequently reduced by Koiran

(2012); followed by Tavenas (2015) who reduced the size of C ′ to 2O(
√
n logn). These

depth-reduction results motivated further research in proving lower bounds against

depth-4 circuits, since proving the Valiant’s hypothesis would require proving expo-

nential lower bounds against circuits of depth-4 computing the permanent polynomial.

Hence, the study of lower bounds against constant-depth circuits computing hard poly-

nomials follow from the study of depth reduction.

In this chapter, our aim is to study depth reduction in the parameterized setting.

Depth reduction involves obtaining a small upper bound on the size of the circuit of

reduced depth constructed from the unbounded depth circuit. Since the parameterized

notion of efficiency in size is relaxed by a factor of a function on the parameter com-

pared to the classical setting, it seems interesting to investigate if the depth reduction

results in the classical setting translate to circuits where the size is expressed in terms

of both the size and degree of the polynomial computed by it.

As the question of depth reduction is closely related to the arithmetic circuit lower

bounds problem, we also show lower bounds against circuits of depth-4. For this pur-

pose, we use the complexity measure of dimension of partial derivatives defined by

61

Nisan (1991).

We observe that the depth reduction result by Valiant et al. (1983) translates to

arithmetic circuits parameterized be degree, but the result by Agrawal and Vinay (2008)

does not. This is because a lower bound of nO(k) can be obtained on the size of depth-4

circuits with restricted top product gate fan-in computing an explicit polynomial that

can be efficiently computed by a depth-4 circuit of top product gate fan-in bounded

only by k, the degree.

4.2 Chapter Outline

In Section 4.3, the possibility of parameterized depth reduction is discussed. A param-

eterized version of the depth reduction by Valiant et al. (1983) is stated as follows.

Proposition 5. Valiant et al. (1983) Any degree-parameterized polynomial family

(p, k) computable by a circuit of FPT size can be computed by a circuit of depth

g(k) log n and size g′(k)nO(1), for some functions g and g′ that depend only on the

parameter.

In Section 4.4, we obtain a nΩ(k) lower bound against depth-5 powering circuits of

bounded top product gate fan-in.

Theorem 7. There is a polynomial p computed by a Πk/2Σ∧2 circuit of polynomial size

such that any Σ ∧α Σ ∧d Σ circuit computing p has size nΩ(k), for any α = o(k) and

d = k/α.

This rules out a parameterized version of the depth reduction by Agrawal and Vinay

(2008) as a consequence.

Corollary 2. There is a parameterized family of polynomials that can be computed by

depth four circuits of polynomial size, but any depth four ΣΠo(k)ΣΠk circuit computing

it requires size nΩ(k).

62

4.3 Parameterized Depth Reduction

The question of depth reduction is one of the most fundamental structural aspects in

algebraic complexity theory, and can be formally expressed as follows.

Given a polynomial family p = (pn)n≥0 and a size bound s = s(n), what is the

minimum depth of an arithmetic circuit of size s computing p?

This question can be re-stated in the parameterized context as the parameterized

depth reduction problem, which is formally defined as follows.

Given a parameterized polynomial family (p, k) in FPT what is the minimum depth

of a size g(k)nc circuit computing p where g(k) is an arbitrary function of k and c is

some constant?

By applying the depth reduction result by Valiant et al. (1983) (Proposition 3) on

circuits parameterized by degree having FPT size, we state a parameterized version of

their depth reduction result as follows.

Proposition 5. Valiant et al. (1983) Any degree-parameterized polynomial family

(p, k) computable by a circuit of FPT size can be computed by a circuit of depth

g(k) log n and size g′(k)nO(1), for some functions g and g′ that depend only on the

parameter.

In the surprising result by Agrawal and Vinay (2008) (Proposition 4), the authors

showed that any homogeneous polynomial f computed by polynomial size arithmetic

circuits can be computed by depth four ΣΠ
√
nΣΠ

√
n homogeneous circuits of size 2o(n)

(subsequently improved by Tavenas (2015) to 2
√
n logn). Later, Gupta et al. (2014)

proved that over infinite fields, there is a depth three ΣΠΣ circuit of size 2
√
n logn for f .

A parameterized counterpart of the depth reduction in Agrawal and Vinay (2008)

would be to transform a circuitC of size g(k)nO(1) and syntactic degree k to a depth four

ΣΠΣΠ circuit of syntactic degree k and size g′(k)nO(1) where g and g′ are functions of

k alone. Note that a ΣΠΣΠ circuit C of syntactic degree k will have Π fan-in bounded

by k at both of the Π layers. So we can assume it to be of the form ΣΠkΣΠk. Further,

if C is homogeneous with the bottom Π layer having syntactic degree t then C can be

assumed to be a homogeneous ΣΠk/tΣΠt circuit.

63

We first observe that we can replace Π gates with ∧ (powering) gates in any depth

four circuit with syntactic degree bounded by the parameter k. This is because on

applying Fischer’s identity, for any polynomial computed by a ΣΠaΣΠb circuit of size

s, an equivalent Σ ∧a Σ ∧b Σ powering circuit can be obtained such that the depth-5

powering circuit has size poly(s) · 2max{a,b}. The proof of this statement can be seen in

Gupta et al. (2014). The following is a re-statement of the same, in the parameterized

context where a = k/t, b = t.

Lemma 9. Let C be a ΣΠk/tΣΠt circuit of size s computing a polynomial p over Z.

Then there is a Σ∧k/tΣ∧tΣ circuit C ′ of size max{2k/t, 2t} ·s computing p. Moreover,

if C is homogeneous, so is C ′.

Thus a parameterized version of depth reduction in Agrawal and Vinay (2008)

would imply that every parameterized polynomial family (p, k) in FPT can be computed

by a homogeneous Σ ∧O(
√
k) Σ ∧O(

√
k) Σ circuit of size g(k)nO(1) for some function g

of k. However, in the next section, we show that if the degree of top layer of powering

gates is bounded by o(k), then this is not possible.

4.4 Parameterized Lower Bound on Depth-5 Powering

Circuits

In this section we show that among parameterized depth-5 powering circuits, that are

equivalent to depth-4 circuits by a simple application of Fischer’s identity Fischer (1994),

a top fan-in of O(k) gives considerably more computational power than a top fan-in of

o(k).

We consider the depth-5 powering circuit to be of the form Σ ∧O(k
t
) Σ ∧t Σ. By

Lemma 9, we know that ΣΠO(k
t
)ΣΠt circuit of size s can be transformed into a Σ∧O(k

t
)

Σ∧tΣ circuit of size s2max{k/t,t}. In fact Lemma 9 holds for any chosen t ≤ k. We show

that there is a polynomial computable by ΠkΣ∧2 circuits of polynomial size that cannot

be computed by a Σ ∧o(k) Σ ∧k Σ circuit of size g(k)nO(1). Since ΠkΣ∧2 circuits are

a sub-class of ΣΠkΣΠ2 circuits by Fischer (1994), our inference regarding the depth-4

circuits of large top product gate fan-in having greater computational power holds.

64

Theorem 7. There is a polynomial p computed by a Πk/2Σ∧2 circuit of polynomial size

such that any Σ ∧α Σ ∧d Σ circuit computing p has size nΩ(k), for any α = o(k) and

d = k/α.

A polynomial f ∈ F[X] computed by a depth-3 powering circuit (also denoted by

depth-3 diagonal circuit in Saxena (2008)) is of the form f = `d1 + `d2 + · · ·+ `dt where

each `i is a linear form in n variables, t = g(k)poly(n) for some computable g : N→ N

and d is the powering gate fan-in.

We consider the space spanned by kth order partial derivatives of the polynomial f ,

∂≤k(f). We may observe that for r < k, the rth order partial derivatives of `k are all

multiples of `k−r, where ` is a linear form. We use dim(S) to denote the dimension

of the space spanned by polynomials in a set S of polynomials in F[X]. We show that

Theorem 7 follows immediately from Lemma 10 and 11.

Lemma 10. Let α = o(k) and f = `d1 + `d2 + · · ·+ `dt where `i, i ∈ [t] are linear forms

in the variables in X , d ≤ k and t = g(k)nO(1). Then,

dim(〈∂≤rfα〉) ≤ g′(k)no(k),

for some computable function g′, α < r and r = o(k).

Proof. By definition of partial derivatives of order i, i ∈ [r] of a polynomial fα, where

α < r and r < k, we know each polynomial in this set is fα−i times the order i

partial derivative of f . Applying the standard rules for computing partial derivatives,

we conclude that the space spanned by partial derivatives of order≤ r of the polynomial

take the following form.

〈∂≤rfα〉 ⊆ F− span
{
fα−i �

(
`d−r1j1

· . . . · `d−riji

)
| i ∈ [r], r1+...+ri=r

j1,...,ji∈[t]

}
, (4.1)

where the operation � denotes the product between the polynomials in the set

{fα−i | i ∈ [r]} and the set of polynomials {`d−r1j1
· . . . · `d−riji

| r1 + . . . + ri =

i, j1, . . . , ji ∈ [t]}.

Analysing the equation 4.1, we conclude the following. There can be at most ii

partitions of i into r1, . . . , ri, and since i ≤ r, this quantity can be upper bounded by ri.

65

There are
(
t
i

)
linear terms whose powers add up to r(d− 1).

Hence the dimension of F − span(〈∂≤rfα〉) is bounded by
∑α

i=1

(
t
i

)
ri ≤ k

(
t
α

)
kα.

Given that t = g(k)nc for some c > 0 and g a function of k, we get dim(F −

span(〈∂≤rfα〉)) ≤ g′(k)no(k), where g′(k) = kg(k)k.

The above result gives an upper bound on the dimension of partial derivatives mea-

sure for a Σs
∧α Σt

∧d Σ circuit as s · g′(k)no(k). Now, we define an explicit parameter-

ized polynomial of degree k computable by a ΠO(k)ΣΠ2 circuit of FPT size such that it

exhibits a large lower bound on the dimension of partial derivatives measure.

Lemma 11. There is a polynomial p ∈ F[x1, . . . , xn] of degree k that con be computed

by polynomial size ΠO(k)Σ∧2 circuits with dim(∂≤k/2p) = nΩ(k).

Proof. The polynomial p is defined as follows:

p = (x2
1 + · · ·+ x2

2n
k

) · · · · · (x2
2(k−1)n

k
+1

+ · · ·+ x2
n).

Let Bi ⊆ {x1, . . . , xn} such that Bi = {x 2n(i−1)
k

+1
, . . . , x 2ni

k
}, ∀i ∈ {1, . . . , k

2
}.

Let T ⊂ {x1, . . . , xn}, with |T | = r. If ∃xp, xq ∈ T such that ∃i, xp, xq ∈ Bi, then
∂rp
∂T

= 0. Otherwise, T contains exactly one variable from r choices of Bis, r < k
2
,

hence:

∂rp

∂T
= cT

∏
xt∈T

xt

k
2
−r∏
j=1

pij ,

where cT is a constant, ijs are indices of blocks Bij that do not contain any variables in

T and p` = x2
2n
k

(`−1)+1
+ . . .+ x2

2n`
k

. So for all ` such that T ∩B` = φ, p` divides ∂rp
∂T

.

Therefore, dim(〈∂=rp〉) =
(k

2
r

) (
2n
k

)r. For all r < k
2
, we can say dim(〈∂≤rp〉) =

nΩ(k)

g(k)
for some function g.

Using Lemma 11 and Lemma 10, we obtain a lower bound on s, the top gate fan-in

of a depth-5 powering circuit of low top power gate fan-in o(k), thus proving Theorem 7

as follows.

66

Proof of Theorem 7. By the construction of the polynomial p in Lemma 11, it is clear

that it can be computed by a Πk/2Σ
∧2 circuit of size (2n

k
+ 1)k

2
+ 1 = O(n2). Since in

the study of arithmetic circuits, depth-3 circuits are considered to be of the form ΣΠΣ,

we consider p to be efficiently computable by a polynomial size Σ1Πk/2ΣΠ2 circuit

(a power gate ∧ being a special kind of product gate, we can replace power gates by

product gates of the same fan-in).

From Lemma 10, we have the dimension of partial derivatives of
∧o(k) Σ

∧d Σ cir-

cuits, for any d ≤ k, to be at most g′(k)no(k), g′ being an arbitrary computable function

in k. Then, a Σs
∧o(k) Σ

∧d Σ circuit computing pwill have dim(〈∂≤rp〉) ≤ s·g′(k)no(k)

by sub-additivity property of the measure. Thus, using Lemma 11, we have a lower

bound on s as follows:

nΩ(k)

g(k)
≤ dim(〈∂≤rp〉) ≤ s · g′(k)no(k) =⇒ s = nΩ(k).

Theorem 7 implies that a parameterized version of depth reduction in Agrawal and

Vinay (2008) is not possible when the top layer of product gates have fan-in bounded

by o(k):

Corollary 2. There is a parameterized family of polynomials that can be computed by

depth four circuits of polynomial size, but any depth four ΣΠo(k)ΣΠO(k) circuit com-

puting it requires size nΩ(k). This implies that a parameterized version of the depth-

reduction result by Agrawal and Vinay (2008) is not possible for circuits parameterized

by degree.

Proof. By Fischer’s Lemma (Fischer (1994)), any ΣΠo(k)ΣΠO(k) circuit can be con-

verted to a Σ
∧o(k) Σ

∧O(k) Σ with a 2O(k) blow up in size. Thus the family of poly-

nomials (pn,k)n,k≥0 which can be computed by a ΠO(k)ΣΠ circuit of polynomial size

requires nΩ(k) size for any ΣΠo(k)ΣΠ computing it.

As we are unable to obtain a depth-4 degree-k circuit computing p in FPT-size when

the fan-in of the top product gate is restricted to o(k), it is clear that depth-4 degree-k

circuits of top product gate fan-in O(k) have strictly more computational power than

when the top product gate fan-in is bounded by o(k). However, a parameterized version

67

of the statement of the depth-reduction result by Agrawal and Vinay (2008) would entail

that depth-4 degree-k circuits, even of top product gate fan-in o(k), be able to compute p

in FPT-size, since there is a circuitC1 computing p in FPT-size. Hence, we conclude that

depth-reduction to depth-4 is not possible for circuits parameterized by degree where

the product gates have fan-in o(k).

Remark 1. Note that, in the above, it is necessary that α = o(k). Also, the value of d

does not affect the upper bound, in fact, the proof holds even when d = Ω(k). However,

for α = Ω(k), the above proof is not effective in proving the separation between depth-4

circuits and depth-5 powering circuits.

4.5 Conclusion

Though we are able to show that a depth reduction to depth-4 is not possible for param-

eterized arithmetic circuits, we cannot rule out the possibility of depth reduction to a

constant-depth circuit for a larger value of the constant. The possibility of such a result

will be even more evident if we can show a separation between the classes of param-

eterized arithmetic circuits of depth-4 and depth-5. Since, in Ghosal et al. (2017), the

authors show a separation between the classes of parameterized depth-3 and depth-4

circuits, such a separation between circuits of higher depths can also be explored.

The lower bound shown against depth-5 powering circuits also motivates further

exploration of parameterized lower bounds. Such a direction is interesting because it

will give us a view of the parameterized arithmetic circuit landscape and may enable

us to develop further techniques for obtaining lower bounds in the non-parameterized

setting.

68

CHAPTER 5

PARAMETERIZED LOWER BOUNDS AGAINST

MULTILINEAR ALGEBRAIC CIRCUITS

5.1 Introduction

The lack of progress in proving lower bounds against general arithmetic circuits leads

us to consider other perspectives on the problem. The motivation for proving lower

bounds against parameterized arithmetic circuits stems from our interest in examining

a more generalized view of the lower bound problem, by expressing lower bounds in

terms of both the input size and a function of the degree of the polynomial. Such a view

might lead to a greater understanding of the difficulties in solving the arithmetic circuits

lower bound problem.

We consider multilinear models in our study of parameterized lower bounds not

only because they are well-studied but also because multilinear models like read-once

formulas and oblivious ABPs exhibit structural properties that can be exploited in order

to obtain a lower bound against the size of these models for computing the explicit hard

multilinear polynomial.

However, explicit multilinear polynomials defined in the classical setting, like the

Raz-Yehudayoff polynomial (Raz and Yehudayoff (2008)) and the DMPY polynomial

(Dvir et al. (2012)), have degrees of O(n). Thus, these polynomials cannot be pa-

rameterized by their degree, since parameters k are always chosen such that k � n.

Therefore, the biggest challenge here is to construct explicit polynomials of degree k

such that they exhibit a high value of the complexity measure, and can thus be used to

prove lower bounds.

The behaviour of the complexity measure of rank of the partial derivatives matrix,

used in Raz and Yehudayoff (2008), is not known under parameterization by the degree

of the polynomial. Hence, the notion of full rank needs to be defined in the parame-

terized context so that the hard multilinear polynomial can be designed with the aim of

obtaining full rank under any partition, similar to the hard polynomials in the classical

setting.

In this chapter, we first define the notion of full rank in the degree-parameterized

setting. We, then, show two different constructions of explicit multilinear polynomials

which attain close to full rank. While the first polynomial has been obtained using the

notion of perfect matchings on graphs, the construction of the second hard polynomial

is inspired by the construction of a multilinear hard polynomial in Kayal et al. (2016).

We proceed to obtain lower bounds against the multilinear models of read-once

oblivious ABPs and strict-interval ABPs. Since our second hard polynomial can be

expressed as a sum of three read-once formulas, we obtain a lower bound against sum

of read-once formulas by restricting the variables to be read in a fixed order.

5.2 Chapter Outline

In Section 5.3 we construct two degree-k multilinear polynomials. The first polynomial

(defined in Section 5.3.1) attains full rank.

Theorem 8. For the parameterized multilinear polynomial family f = (fn,2k)n,k≥0 such

that f(X) =
∑

M∈M ζM
∏

(i,j)∼M(1 + pij), we have,

rankϕ(fn,2k) = Ω

(
nk

(2k)2k

)
,

for every equi-partition ϕ : X → Y ∪ Z and k > 3.

The second polynomial (defined in Section 5.3.2) has rank that is away from the full

rank by a constant factor in the exponent.

Theorem 9. Let h be the polynomial defined as h(X) =
∑

i∈[3] wi

(∏
j∈[k

2
]

∑
(u,v)∈Bij xuxv

)
.

Then there is a constant c = 23+20ε
114

for a fixed ε > 0 such that for every equi-partition

ϕ : X → Y ∪ Z, over the rational function field F(w1, w2, w3) such that,

rankϕ(h) ≥
(n
k

)ck
.

In Section 5.4 we prove lower bounds on the size of classes of parameterized mul-

70

tilinear polynomials computing the hard polynomials defined in the previous sections.

We first obtain lower bound against ROABPs.

Theorem 10. A ROABP P computing the polynomial family f = (fn,2k) requires size

S = Ω(nk/(2k)2k).

Theorem 11. An ROABP computing the family of polynomials h defined in Section 5.3

requires size nΩ(k).

The following result is the lower bound against strict-interval ABPs.

Corollary 4. Any strict-interval ABP computing the polynomial f has size nΩ(
√
k).

In Section 5.4.4 we obtain a lower bound against sum of ROPs with restricted or-

dering. The ordering follows from a graph constructed from the ROF computing a ROP.

Bisection of an undirected graph G = (V,E) is a set S ⊆ V such that |S| = |V |/2.

The size of a bisection S is the number of edges across S and S, i.e., |{(u, v) | (u, v) ∈

E, u ∈ S, v /∈ S}|. The following is an immediate consequence of the results preceding

it, in Section 5.4.4.

Theorem 14. Let G be a graph on n vertices such that there is a bisection of G of

size n1−ε. Suppose p1, . . . , ps be ROFs such that Gpi is a sub-graph of G. Then, if

p = p1 + · · ·+ ps we have s = (nΩ(k)/t(k)), where t is a computable function on k.

In Section 5.4.2, we prove a separation between parameterized read-once and read-2

oblivious ABPs.

Corollary 3. There is a parameterized polynomial family computable by polynomial

size read-2 ABPs such that any ROABP computing it has size nΩ(k) where k is the

parameter.

5.3 Construction of high rank polynomials

For any complexity measure µ : F[X] → R≥0 for polynomials to be useful, we need a

class of polynomials where the measure is “small” and an explicit family of polynomials

71

where the measure is “large”. In this section, we consider the latter task and show

construction of two parameterized polynomial families f = (fn,2k)k≥0 and h = (h2n,k)

such that the rank of the partial derivative matrix is large for almost all partitions.

The first family is computable by a depth four circuit of FPT (i.e., t(k)nO(1) where

t(k) = kO(k)) size. For any partition ϕ, rankϕ(f) matches the maximum possible value

defined by the upper bound described in Lemma 2, upto a factor that depends only on

the parameter.

The second family h is a sum of three ROPs, also computable by a circuit of FPT

size. In the case of h, rankϕ(h) attains the maximum possible value upto a constant

factor in the exponent. Hence, rankϕ(h) ≥ t2(k)nck where t2 is a computable function

on k and c < 1/2.

5.3.1 A full rank polynomial

We know, by Lemma 2, that for a multilinear polynomial g of degree k in n variables,

the maximum possible value of rankϕ(g) over all partitions ϕ is at most (k + 2)
(
n/2
k/2

)
.

Though it is possible to construct polynomials that achieve this bound under a fixed par-

tition ϕ, it is not immediately clear if there is a polynomial g computed by small circuits

that is full rank under every equi-partition. In the following, we give the description of

a multilinear polynomial of degree k that has rank nk/2/t(k) where t is a function that

depends only on k. We assume that 2k|n.

We considerK2k, the complete graph on 2k vertices. Suppose V1∪· · ·∪V2k = X be

a partition of the variable set X = {x1, . . . , xn} such that |Vi| = |Vj| for 1 ≤ i < j ≤

2k. For convenience let Vi = {x(i−1)n/2k+1, . . . , xin/2k}, where we assume a natural

ordering among the variables, i.e., xj � xi, ∀j ≥ i. We consider the variable set Vi as

the label of vertex i of the graph K2k for 1 ≤ i ≤ 2k. For each edge (i, j) of K2k, we

define a polynomial pij on the vertex set Vi ∪ Vj . These edge polynomials pij will be

used in the subsequent construction of the polynomial f .

Let M be the set of all possible perfect matchings on G = K2k. We define a

72

parameterized family of polynomial f = (fn,2k)n>1,2k|n, fn,2k as follows:

f(x1, x2, . . . , xn) =
∑
M∈M

ζM
∏

(i,j)∼M

(1 + pij(Vi ∪ Vj)),

where ζM for M ∈ M are formal variables. We define the edge polynomial pij as

an n/k-variate quadratic multilinear polynomial, such that,

pij(x(i−1)n/2k+1, . . . , xjn/2k) =
∑
k<`

ωk,`xkx`.

Here ωi,j , for 1 ≤ i < j ≤ n/k, are also formal variables. So the polynomial f is

defined on G[X] where G is an extension of the field F containing {ωi,j} ∪ {ζM |M ∈

M}.

Note that fn,2k is a degree 2k polynomial in n variables. When n and k are clear

from the context, we use f to denote fn,2k. Let G = F({ζM |M ∈M}∪{ωi,j | 1 ≤ i <

j ≤ n/k}), i.e., the rational function field of the polynomial ring F[{ζM |M ∈M} ∪

{ωi,j | 1 ≤ i < j ≤ n/k}].

We note that by definition, f is multilinear and can be computed by a depth-4 circuit,

parameterized by the degree, 2k. As there are kO(k) perfect matchings in M, and a

circuit of size (kn)(O(1)) can compute the polynomial
∏

(i,j)∈M(1 + pij), the size of the

depth-4 circuit computing f is at most kO(k)nO(1), which is FPT with k as the parameter

and n as the size of the input.

In the remainder of the section, we argue that the polynomial family f defined above

has almost full rank under every partition ϕ : X → Y ∪Z, such that |Y | = |Z| = |X|/2.

Now, the partition function divides the set of variables X into two equal halves, but it

might not divide the individual sets Vi ∪ Vj , the set of variables on which the edge

polynomial pij is defined, in two equal halves. In that case, we define a new quantity,

imbalance, as follows.

Definition 21. Consider an equi-partition function ϕ : X → Y ∪ Z. A set V ⊂ X is

said to be `-unbalanced with respect to ϕ if |V |
2
− |ϕ(V) ∩ Z| = ` = |ϕ(V) ∩ Y | − |V |

2
.

It may be noted that ` can be a positive or negative accordingly as |ϕ(V) ∩ Y | >

|ϕ(V) ∩ Z| or otherwise. Our first observation is, even if the set V = Vi ∪ Vj is `-

73

unbalanced for ` < n/4k for all edges (i, j), rankϕ(pij) remains large:

Lemma 12. If Vi ∪Vj is `-unbalanced with respect to a partition ϕ : X → Y ∪Z, then

rankϕ(pij) = Ω(n/2k − |`|).

Proof. Without loss of generality, we consider the case ` > 0. As already defined,

Vi∪Vj = {x(i−1)n/2k+1, . . . , xjn/2k} and we denote pij as p for the rest of the proof. Let

us assume, for the ease of calculations, Vi ∪ Vj = {x1, . . . , xn/k}. Let ϕ be such that

for all xq ∈ Vi ∪ Vj ,

ϕ(xq) =

yq, if q ≤ n/2k + `,

zq−(n/2k+`) otherwise.
(5.1)

Since p is a quadratic polynomial, the rows of Mpϕ are indexed by degree at most one

monomials ∅, y1, . . . yn/2k+` and degree two monomials of the form yiyj, 1 ≤ i < j ≤

n/2k + `. Similarly, the columns are indexed by ∅, z1, . . . , zn/2k−` and degree two

monomials zizj, 1 ≤ i < j ≤ n/2k − `.

We claim that the rows and columns indexed by degree 2 monomials will contribute

at most 2 to the rank. This is because all row-indexing monomials yiyj will have a

non-zero entry ωi,j only corresponding to the first column indexed by ∅. Similarly, all

column-indexing monomials zizj have one non-zero entry along the first row, indexed

by ∅. The first row and the first column can together contribute a rank of at most 2.

Now, it is required to show that the sub-matrix ofMpϕ with rows indexed by ∅, y1, . . . yn/2k+`

and columns indexed by ∅, z1, . . . , zn/2k−` has rank Ω(n/2k − |`|).

The (yi, zj)
th entry of Mpϕ contains ωi,n/2k+j . The sub-matrix of Mpϕ on rows and

columns indexed by degree-1 monomials ∅, y1, . . . yn/2k+` and ∅, z1, . . . , zn/2k−` has di-

mension n/2k + ` by n/2k − `. By suitably substituting the formal variables ωi,n/2k+j

with values from F, we can ensure that the sub-matrix of Mpϕ is of full column-rank

when ` is positive. Thus rankϕ(p) = Ω(n/2k− `). Therefore, over any edge (i, j) in G

and any ϕ, the polynomial pij has rank Ω(n/2k−|`|). It may be noted that the argument

above works even when ϕ does not satisfy (5.1). This completes the proof.

Before we proceed with proof of the required lower bound on the rank of f under

74

any partition, we define imbalance on each variable set Vi, denoted by D(Vi). If the

imbalance on Vi ∪ Vj for an edge (i, j) is `, we want D(Vi), D(Vj) to be such that

` = D(Vi) +D(Vj).

Definition 22. For a partition ϕ : X → Y ∪ Z, the imbalance on a set Vi is defined as

D(Vi)
def
= |ϕ(Vi) ∩ Y | −

|Vi|
2
.

Let Yi = ϕ(Vi) ∩ Y, Zi = ϕ(Vi) ∩ Z. We know ∀i ∈ [2k], |Vi| = n
2k

. So,

D(Vi) = |Yi| − n
4k

is the imbalance of ϕ on Vi.

Under a partitionϕ, in the extreme cases, all variables in Vi are mapped to Y , or none

of them are. Hence, |Yi| ∈ [0, n
2k

], since |Vi| = n/2k. It follows that D(Vi) ∈ [−n
4k
, n

4k
].

We are now ready to give the rank bound on the polynomial family f .

Theorem 8. For the parameterized multilinear polynomial family f = (fn,2k)n,k≥0 such

that f(X) =
∑

M∈M ζM
∏

(i,j)∼M(1 + pij), we have,

rankϕ(fn,2k) = Ω

(
nk

(2k)2k

)
,

for every equi-partition ϕ : X → Y ∪ Z and k > 3.

Proof. Let us fix ϕ to be an arbitrary equi-partition of X . Note that by the definition of

f , it is enough to show that for all equi-partitions ϕ, there exists an optimal matching

N and fN =
∏

(i,j)∈N(1 + pij) such that fN is of full rank i.e. rankϕ(fN) = Ω(nk

(2k)2k).

Then we set ζN = 1 and ζM = 0 for all other M ∈M, so that f is of almost full rank.

Since fN is multilinear, it is enough to prove that ∀(i, j) ∈ N , rankϕ(pij) = Ω(n
k2).

This would imply that our optimal perfect matching N is such that all edges (i, j) in

N have very low imbalance under ϕ. Our argument is a construction of the required

matching N .

Let us consider an arbitrary matching M ∈ M. We construct N from M . For

that purpose, we need to analyse each edge e = (i, j) in the matching M . Hence, we

associate a weight to all edges e with respect to ϕ such that wt(e) = |D(Vi) + D(Vj)|.

The weight of the matching M denoted by wt(M), is the sum of the weights of the

edges in M , i.e., wt(M) =
∑

e∈M wt(e).

75

In the following, we give an iterative procedure, that given M , produces a match-

ing N with the required properties. The procedure obtains a new matching of smaller

weight than the given matching in each iteration. The crucial observation then is that

matchings that are weight optimal with respect to the procedure outlined below indeed

have the required property.

We say that a matching N is good with respect to ϕ, if ∀ e = (i, j) ∈ N , the

weight does not exceed a threshold t, i.e. wt(e) ≤ t = n/2k − n/(2k(k − 1)). Note

that if M is good then for every edge (i, j) ∈ M , we have Vi ∪ Vj is `-unbalanced for

some ` with |`| ≤ n/2k − n/(2k(k − 1)). Then, by Lemma 12 we have rankϕ(fM) ≥

(n/(2k(k − 1)))k. In that case, the matching M is the optimal matching N we desire.

Suppose the matching M is not good. Let e = (i, j) ∈ M be a bad edge such

that wt(e) > n/2k − n/2k(k − 1). If there are multiple bad edges, e is chosen such

that wt(e) is the maximum, breaking ties arbitrarily. Note that we can assume that

D(Vi) and D(Vj) are of the same sign for wt(e) to have the highest value. Without

loss of generality, assume that both D(Vi) and D(Vj) to be non-negative, i.e., wt(e) =

D(Vi) +D(Vj). Since ϕ is an equi-partition, we have

∑
m∈[2k]

D(Vm) =
∑
m∈[2k]

(
|Ym| −

n

4k

)
=
∑
m∈[2k]

|Ym| −
n

2
= 0

=⇒
∑

m∈[2k]\{i,j}

D(Vm) = −wt(e)

=⇒
∑

e′∈M\{e}

sgn(e′)wt(e′) = −wt(e) < −n
2k

+
n

2k(k − 1)
,

where sgn(e) is ±1 depending on the sign of wt(e). By averaging, there is an edge

e1 ∈M such that,

sgn(e1)wt(e1) = − wt(e)

(k − 1)
<

−n
2k(k − 1)

+
n

2k(k − 1)2
.

Suppose e1 = (i1, j1). The idea is that on swapping the end-points (i, j) of the bad

edge e with that of the edge e1, (i1, j1), we will get a new matching M ′ with two new

edges, all other edges being from M . We claim that this matching M ′ has lesser total

weight wt(M ′) than wt(M). We can repeat this process to reduce weights of bad edges

in M ′ till we obtain a matching N where all edges are good.

76

For the ease of analysis, let D(Vi) = a, D(Vj) = b, D(Vi1) = c, D(Vj1) = d.

The new matching is constructed based on the values of a, b, c and d. Since c + d =

wt(e1) < 0, it must be that either both c, d are negative, or any one of them is negative,

i.e. c < 0, d ≥ 0 or c ≥ 0, d < 0. Here, we discuss both these cases.

Case 1 Suppose c, d < 0. Then, |a + b| + |c + d| > |a + c| + |b + d|. We replace

the edges (i, j) and (i1, j1) by (i, i1), (j, j1) to get a new matching M ′. We have

wt(M ′) < wt(M).

Case 2 Either c ≥ 0 and d < 0 or c < 0 and d ≥ 0. Without loss of generality, assume

that c ≥ 0 and d < 0. We argue even if c is positive, it is smaller than at least

one of the values a, b, thus making swapping end-points of e with e1 yield a better

matching.

We know, the least value d can have is −n/4k. Suppose c > n
4k
− n

2k(k−1)
+

n
2k(k−1)2 . Then we have d < −n

2k(k−1)
+ n

2k(k−1)2 − c < −n
4k

which is impossible.

Therefore, we have c ≤ n
4k
− n

2k(k−1)
+ k

2k(k−1)2 .

So, if c > a, b, then a + b < 2c ≤ n
2k
− n

k(k−1)
+ n

k(k−1)2 . For k > 3, this is a

contradiction since wt(e) = a+ b > n
2k
− n

2k(k−1)
, and this lower bound seems to

be higher than the upper bound. Hence, we consider the following sub-cases:

Sub-case (i) a > c. Then a+ b > c+ b, replace the edges (i, j) and (i1, j1) with

the edges (i, j1) and (i1, j) to get the new matching M ′.

Sub-case (ii) b > c. Then a+ b > a+ c, replace (i, j) and (i1, j1) with the edges

(i, i1) and (j, j1) to get the new matching M ′.

The second case above also implies that |b + d| ≥ 0 and |a + c| ≥ n
2k
− n

2k(k−1)
+

k
2k(k−1)2 . We know |a + b| ≤ n/2k. Therefore, the least decrease in total weight of

matching is:

|a+ b|+ |c+ d| − |a+ c| − |b+ d| = n

2k
+

(
n

2k(k − 1)
− n

2k(k − 1)2

)
−
(
n

2k
− n

2k(k − 1)
+

k

2k(k − 1)2

)
− 0

=
n

k(k − 1)
− n

k(k − 1)2
=

2t

(k − 1)
.

77

For the new matching M ′ obtained from M as above, we have one of the following

properties:

• It has smaller total weight than M , i.e., wt(M ′) < wt(M), or

• If M has a unique maximum weight edge, then the weight of any edge in M ′ is

strictly smaller than that in M , i.e. maxe′∈M ′ wt(e
′) < wt(e), or

• The number of edges that have maximum weight inM ′ is strictly smaller than that

inM , i.e., |{e′′ |wt(e′′) = maxe′∈M ′ wt(e
′)}| < |{e′′ |wt(e′′) = maxe′∈M wt(e′)}|.

Since all of the invariants above are finite, by repeating the above procedure a finite

number of times we get a matching N ∈ M such that any of the above steps are not

applicable. That is, for every e′ ∈ N , wt(e′) ≤ n/2k − n/2k(k − 1). In fact, the

largest value of wt(e) = n/2k, and least decrease is wt(M) − wt(M ′) ≥ t/(k − 1) =

n/2k(k−1)−n/2k(k−1)2 by averaging. So, in at most k iterations for each edge, i.e.

O(k2) iterations, we will obtain a matching where all edges have zero imbalance. The

matching we need has low imbalance t for every edge, so our algorithm will obtain N

from M in O(k2) iterations.

As required, for every edge (i, j) ∈ N , we have rankϕ(pij) = Ω(n/2k(k − 1)) and

rankϕ(fN) = Ω(nk/(2k)2k). By the construction of the polynomial and Lemma 1, we

have rankϕ(f) ≥ maxM∈M{rankϕ(fM)} = Ω(nk/(2k)2k).

5.3.2 A high rank sum of three ROFs

In Kayal et al. (2016), Kayal et al. showed that there is a polynomial that can be written

as sum of three ROFs such that any ROABP computing it requires exponential size. The

lower bound proof in Kayal et al. (2016) is based on the construction of a polynomial

using three edge disjoint perfect matchings on n vertices.

The construction of this polynomial, as a crucial ingredient, used a 3-regular mildly

explicit family of expander graphs defined in Hoory et al. (2006). Let G = (G(q))q>0, prime

be a family of 3-regular expander graphs where a vertex x in G(q) is connected to

x+ 1, x− 1 and x−1 where all of the operations are modulo q. When q is clear from the

context, we denote G(q) by G. Since G is a simple, undirected graph, we represent any

edge e in E, the set of edges in G, by e = {u, v}.

78

1 2

3 4

5 6

7 8

G = (V,E)

V1 V2

G′ = (V1, V2, E
′)

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

Figure 5.1: Example construction of double cover G′ from G = (V,E), where V =
{1, . . . , 8}.

We defineG′ to be the double cover ofG such that, G′ = (V1, V2, E
′) is the bipartite

graph where V1, V2 are copies of V and for all pair of vertices {u, v} from V such that

u ∈ V1, v ∈ V2 and u ∈ V2, v ∈ V1, it holds that {u, v} ∈ E ′ ⇐⇒ {u, v} ∈ E. As no

vertex in G has a self-loop, any edge of the form {u, u} is not present in E, and hence,

E ′.

Figure 5.1 gives an example of a double cover G′ of a graph G = (V,E) where

V = {1, . . . , 8} and E = (1, 2), (3, 4), (5, 6), (7, 8).

It is known from Hoory et al. (2006) that the set of edges in E ′ can be viewed as the

union of 3 edge disjoint perfect matchings. In Kayal et al. (2016), Kayal et al. construct

a polynomial for each of these matchings and the hard polynomial is obtained by taking

the sum of these three polynomials. This polynomial has degree n/2 and therefore is

unsuitable in the parameterized context.

We construct a polynomial h from the same graph G′ also based on three edge-

disjoint perfect matchings as in Kayal et al. (2016), but our polynomial has degree k.

Suppose M1 ∪M2 ∪M3 = E ′ be the edge-disjoint perfect matchings. We divide the

n/2 edges in each of the Mi into k/2 bags of n/k edges each.

Suppose Mi = Bi1∪Bi2∪ · · · ∪Bik/2, where Bij is the jth bag of edges in Mi. The

division of edges into these k/2 bags is done arbitrarily. Now, for each edge (i, j) ∈

M , we consider a monomial xixj . So, for every bag Bij , we define the bilinear term

79

hij =
∑

(u,v)∈Bij xuxv and the polynomial hi corresponding to each Mi is defined as

hi =
∏

j∈[k
2

] hij .

The final polynomial is the following:

h(x1, . . . , xn) =
∑
i∈[3]

wi
∏
j∈ k

2

hij =
∑
i∈[3]

wi

∏
j∈[k

2
]

∑
(u,v)∈Bij

xuxv

 , (5.2)

where w1, w2 and w3 are formal variables, wi corresponding to the matching Mi. To

analyse the hardness of this polynomial, we need the notion of bichromatic edges.

Definition 23. For a partition ϕ : X → Y ∪ Z, and an edge (u, v) ∈ Mi, (u, v) is said

to be bichromatic with respect to ϕ if either ϕ(xu) ∈ Y and ϕ(xv) ∈ Z, or ϕ(xu) ∈ Z

and ϕ(xv) ∈ Y .

For a set of edges A, let beϕ(A) be the number edges in A that are bichromatic with

respect to ϕ. For a graph G = (V,E), let beϕ(G) = beϕ(E).

Let X be the variable set corresponding to vertices in G, i.e., X = {x1, . . . , xn}.

Fixing an equi-partition ϕ, we will view it as a coloring of variables in X in the color

represented by Y or Z. The degree-2 monomials in the polynomial can now be viewed

as a monochromatic edge if both end-points are of the same color, and a bichromatic

edge otherwise. As seen in Equation 5.2, in a particular term hij , each bichromatic edge

contributes 1 towards the rank of the partial derivative matrix of hij and all monochro-

matic edges together contribute a maximum of 2. This is the idea we will use to prove

the desired property of the polynomial h in the following theorem.

Theorem 9. Let h be the polynomial defined in Equation 5.2. Then there is a constant

c > 23+20ε
114

for a fixed ε > 0 such that for every equi-partition ϕ : X → Y ∪Z, over the

rational function field F(w1, w2, w3), we have

rankϕ(h) ≥
(n
k

)ck
.

Proof. Let us fix an arbitrary partition ϕ : X → Y ∪ Z. By the expander property

of G (see Kayal et al. (2016)), the number of edges from Y to Z is lower bounded by

E(Y, Z) ≥ (2+10−4)
2
· |Y | = (1+ε)n

2
for a fixed ε > 0.(See Kayal et al. (2016) for details.)

Now, each perfect matching has n
2

edges, so the graph has 3n
2

edges. By averaging,

80

we get that there is a matching Mi, 1 ≤ i ≤ 3 such that the number of bichromatic

edges in Mi,

beϕ(Mi) ≥
(1 + ε)n

6
. (5.3)

Without loss of generality, suppose i = 1. Let h1 =
∏

j∈[k
2

]

∑
(u,v)∈B1j

xuxv, i.e.,

the polynomial corresponding to M1. We need to get an upper bound for beϕ(M1).

Let us assume that the bichromatic edges in M1 are distributed evenly across all

sets in the partition B11, . . . , B1k/2. Then, for every bag B1j we will have beϕ(B1j) =(
(1+ε)n

6
· 2
k

)
= (1+ε)n

3k
, which will be the same as rankϕ(h1j) as each bichromatic edge

contributes 1 towards the rank. By sub-multiplicativity, it follows that rankϕ(h1) ≥(
(1+ε)n

3k

)k/2
.

However, this may not hold in general for M1, because the bichromatic edges can

potentially be distributed in exponential number of ways across the bagsB1j . Therefore,

it is possible that for some values of j, the bags B1j contain only monochromatic edges.

This will reduce the exponent of n in the expression of the rank. Thus, this argument is

not the right way to analyse the rank of the polynomial.

Nevertheless, we get a smaller but good enough bound by a simple averaging ar-

gument. Let beϕ(Mi) =
∑

j∈[k
2

] beϕ(Bij) and let α denote the number of bags with

sufficient number of bichromatic edges, i.e. α = |{j | beϕ(B1,j) ≥ n/20k}|. Then, for

(k/2 − α) bags of M1, the maximum number of bichromatic edges is upper bounded

by (k/2 − α)n/20k, and the upper bound for each of the α remaining bags is the total

number of edges in each bag, n/k. So, we upper bound beϕ(M1) as follows:

beϕ(M1) ≤ α
n

k
+ (k/2− α)

n

20k

=⇒ beϕ(M1) ≤ α
n

k
· 19

20
+

n

40
. (5.4)

Finally, using the lower bound given by (5.3) with the upper bound in (5.4), we have

(1 + ε)n

6
≤ α

n

k
· 19

20
+ k · n

40k

=⇒ α ≥ (23 + 20ε)

114
k.

81

Now rankϕ(
∑

(u,v)∈B1j
xuxv) = beϕ(B1j) as we have already explained. Hence we

have rankϕ(h1) ≥ (n
20k

)α =
(
n
k

)ck for some constant c > (23+20ε)
114

as required. On

setting w1 = 1 and w2, w3 to zero, we obtain the same rank lower bound for h.

5.4 Lower bounds

In this section we prove parameterized lower bounds for some special classes of syn-

tactic multilinear ABPs computing the polynomial families defined in Section 5.3. In

particular, we prove lower bounds for the size of ROABPs, strict interval ABPs and a

sum of restricted class of ROPs for computing one or both of the hard polynomials we

have defined in the previous section.

The general strategy of the lower bound is to obtain an equi-partition ϕ of the vari-

ables for which any polynomial computed by our chosen model attains the largest rank

and then comparing this upper bound, which is usually in terms of the size s of the ABP,

with the rank lower bound on the hard polynomials.

5.4.1 ROABP

In this section we prove a parameterized lower bound for the size of any ROABP com-

puting the polynomials defined in Section 5.3. The lower bound argument follows

from the fact that for any polynomial computed by an ROABP P , there exists an equi-

partition ϕ of variables such that rankϕ(P) is bounded by the size of the ROABP Nisan

(1991).

Lemma 13. A ROABP P of size S computing a polynomial in F[X] has rankϕ(P) ≤ S

for an equi-partition ϕ : X → Y ∪ Z.

Proof. Let P be an ROABP of size S computing a polynomial f ′. Let the layers in P

be L0, L1, . . . , Ln, such that L0 contains only the source node s and Ln contains only

the terminal node t. We consider the order in which the variables are read from left to

right in the ROABP as x1, x2, . . . , xn.

82

We can define the equi-partition ϕ : X → Y ∪ Z given the above order, such that,

ϕ(xi) =

yi, if i ≤ n/2,

zi−n/2 otherwise.

Let us consider the n/2th layer. By definition of P , the incoming edges to any layer

Li in P are labelled with a linear polynomial in xi. At any node j in Ln/2, the paths

from s to j are products of linear terms in variables v, ϕ(v) ∈ Y . The sum of these

paths, which is computed at j, can be seen as a sub-program [s, vj]P . Similarly, the

sum of the paths from j to t, computed at t, can be denoted by the sub-program [vj, t]P .

Then, we can represent f as

f(x1, . . . , xn) =
∑
j∈Ln/2

[s, vj]P · [vj, t]P .

By definition of ϕ, for all vj ∈ Ln/2, every product [s, vj]P · [vj, t]P contributes 1

towards the rank of P . This is because every row-indexing monomial in MPϕ corre-

sponding to paths from s to j has non-zero entries corresponding to the same column-

indexing monomials, corresponding to paths from j to t. So by Gaussian elimination,

the product of sub-programs [s, vj]P and [vj, t] contribute at most 1 to rankϕ(P). The

number of such products in the expression for f is at most |Ln/2|, the number of nodes

in the (n/2)th layer.

Thus, rankϕ(P) ≤ |Ln/2| ≤ S, S being a loose upper bound on the number of nodes

in the n/2th layer.

Theorem 10. A ROABP P computing the polynomial family f = (fn,2k) requires size

S = Ω(nk/(2k)2k).

Proof. By Lemma 13 and given that the polynomial computed by P is f , rankϕ(f) ≤ S.

By Theorem 8, rankϕ(f) = Ω(nk/(2k)2k). Therefore we have S = Ω(nk/(2k)2k) as

required.

Combining Lemma 13 with Theorem 9 we get:

83

Theorem 11. An ROABP computing the family of polynomials h defined in Equation 5.2

requires size nΩ(k).

Proof. From the proof of Theorem 10, we see that for any size S ROABP computing the

polynomial h, the equi-partition ϕ that maps the first n/2 variables to Y and the rest to

Z ensures that rankϕ(h) ≤ S. Then by Theorem 9, we have S = nΩ(k) as required.

5.4.2 Separation Between Read-2 and Read-Once Oblivious ABPs

In this section, we show the power of reads of a variable in an oblivious ABP. To be

clear, our family of hard polynomials h can be computed efficiently by oblivious ABPs

if we allow two reads instead of one for every variable.

Theorem 12. The family of polynomials h defined in Section 5.3 can be computed by

read-2 oblivious ABPs of size nO(1).

Proof. According to the construction of h, we have three edge-disjoint perfect match-

ings M1,M2 and M3. We will try to construct an ABP computing the polynomial f

with as less number of reads as possible for each variable. We show that two reads per

variable is enough.

We first consider the two perfect matchingsM1 andM2 in the graphG′ = (V1, V2, E
′).

By definition of E ′, for every perfect matchingM inG′ there will exist a perfect match-

ing N in G, G′ being the double cover of G. Hence, corresponding to M1,M2 we

have edge-disjoint perfect matchings N1, N2 in G. As N1 and N2 are edge disjoint,

their union forms a cycle cover of the graph G, C = (C1, . . . , C`). An arbitrary cycle

Ci = (pi, xi,1, . . . , xi,r, pi) for r > 0, where the first variable repeats at the end. We call

this repeating variable the pivot for the cycle Ci. We construct a read-2 oblivious ABP

P computing h1, h2 as defined in Section 5.3 and we show that we can add edges to P

to compute h3 without having to increase the number of layers in which a variable is

read more than 2.

Given the cycle cover C, we want to construct a read-2 oblivious ABP from it. Our

procedure constructs one ROABP for each matching N1 and N2, but these ROABPs

are on different orders, so their sum is a read-2 oblivious ABP. Each of these ROABPs

P1, P2 is a sum of ROABPs Pij on the same order, one corresponding to each disjoint

84

s t

s1

s2

t1

t2

1

w1

w2

s11

s12

s21

s22

x1 x2

x3

x4

x6 x5

x7

x8

x4

x1

x5 x3

x2 x6

x8

x7

t21

t22

1

t12

t11

Figure 5.2: Example construction of read-2 oblivious ABP P ′, where V = {1, 2, . . . , 8}
and perfect matchings N1 = {(1, 2), (3, 4), (5, 6), (7, 8)} and N2 =
{(1, 4), (2, 6), (3, 5), (7, 8)}.

variable set Bij i.e., the ROABP P1 for N1 is the sum of ROABPs P1j for B1js, which

start and end at terminal nodes s1j, t1j (refer to Figure 5.2 for more clarity on the

notation).

Each path in Pij corresponds to a monomial xmxn in the bilinear term corresponding

to Bij. The two orders in which variables will occur in P1 + P2 is fixed by the cycle

cover C. We know, given C, each monomial in P1 + P2 is now of the form pixi,1,

xi,jxi,j+1 and pixi,r, i ∈ [`]. We consider the cycles in the order C1, . . . , C`. The

monomial p1x11 is converted into a path in Pij such that p1, x11 ∈ Bij . This process is

repeated as our procedure reads through the edges in the cycles in the cycle cover. This

requires taking one edge from the cycle and searching each bag Bij, i ∈ {1, 2} for it,

which will take 2× n
2k
· k

2
= n

2
for each edge. There are at most n edges in the cycle, so

the total time taken (and number of paths added to the ABP) is O(n2).

We note that the variable pi is being read twice, while every other variable is read

only once. Hence, the pivot variables constitute the second pass on variables and two

orders on the variables emerge from a sequential reading of the cycles C1, . . . , C`.

Now, we considerN3. For all monomials of the form pipj , xi,rpi, where pi are pivots

in the cycle cover, we add paths to the ABP according to the first or second occurrence

of the pivot variables. For the rest of the monomials xi,axj,b, we can add them according

85

to their only occurrences in P1 + P2 or according to another order as we please, as we

can allow one more read for the non-pivot variables. We add n/2 paths to the previous

ABP in total.

Hence, we have a read-2 oblivious ABP P of size nO(1) computing h.

Figure 5.2 illustrates the construction of the read-2 oblivious ABP P ′ forN1, N2 i.e.,

w1h1 + w2h2 where the set of vertices V = {1, 2, . . . , 8} and the perfect matchings are

N1 = {(1, 2), (3, 4), (5, 6), (7, 8)} and N2 = {(1, 4), (2, 6), (3, 5), (7, 8)}. Hence, they

form a cycle cover C1, C2 where C1 = (1, 2, 6, 5, 3, 4, 1) , C2 = (7, 8, 7). Thus x1, x7

are pivot variables and are read twice, while the other variables are read once.

From the above theorem, the separation between read-once and read-twice oblivious

ABP is clear.

Corollary 3. There is a parameterized polynomial family computable by polynomial

size read-2 ABPs such that any ROABP computing it has size nΩ(k) where k is the

parameter.

Proof. Follows from Theorems 11 and 12.

5.4.3 Strict interval ABPs

In this section we prove a parameterized lower bound against the polynomial family f

defined in Section 5.3 for the size of strict interval ABPs. The equivalence of ROABP

and strict interval ABP obtained in Section 3.5 already gives us a lower bound against

strict interval ABPs. Nevertheless, we describe a lower bound on strict interval ABPs

here, as the argument is interesting in its own right and might be generalizable to a

larger class of ABPs.

Recalling the definition of strict-interval ABPs (Definition 4), we assume without

loss of generality, that π is the identity permutation. Let P be a π strict-interval ABP

computing the polynomial f .

As a crucial ingredient in the lower bound proof, we show that using the standard

divide and conquer approach, a strict-interval ABP can be transformed into a depth

four circuit with nO(
√
k) blow up in the size. To begin with, we need a simple depth

86

reduction for strict interval ABPs computing degree k polynomials. For that purpose,

we first homogenize the strict-interval ABP:

Lemma 14. Let P be a syntactic multilinear ABP of size S computing a homogeneous

degree k polynomial g on n variables. Then there is a syntactic multilinear ABP P ′ of

depth k + 1 and size O(S · k) computing g such that:

1. Every node in the ith layer of P ′ computes a homogeneous degree i polynomial.

2. If P is strict interval then so is P ′.

Proof. Without loss of generality, we assume that P is homogeneous, i.e., for every

node v in P , the polynomial [s, v]P is homogeneous, since homogenization of an ABP,

first illustrated by Nisan (1991), does not blow up the size of the ABP beyond a factor

of the degree k. For every node v in P , let deg(v) be the degree of the polynomial

[s, v]P . We give a layer by layer construction of the program P ′. Let Li be the set of all

nodes v in P such that deg(v) = i, i.e., Li = {v | deg(v) = i}. The program P ′ has

k + 1 layers in addition to s and t, with ith layer consisting of nodes Li. The edges are

added inductively as follows:

Base Case: Every node in L0 computes a degree 0 polynomial, i.e., a constant. Add

suitable edges from s to nodes in L0.

Inductive Step: Suppose the branching program has been constructed upto layer

Li−1 for i ≥ 1. We add incoming edges to Li as follows. For every node v ∈ Li, with

an incoming edge (u, v) in P , we have two possibilities,

Case 1 u ∈ Li−1. Then, we add the edge (u, v) to P ′ with the same label as label(u, v).

Case 2 u ∈ Li. In this case, we wait till all the incoming edges of u are processed.

Then, for every incoming edge (u′, u) in P ′ we add the edge (u′, v) with the label

label(u′, u) · label(u, v).

There is a one-to-one correspondence between the nodes of P and that of P ′, since

we have only moved nodes of P of degree < i from Li to a suitable layer preceding

Li, ensuring that nodes j in Li (in P ′) compute only sub-programs [s, vj]P of degree

exactly i.

87

As the polynomial is of degree k, every node in P will result in the creation of at

most k new nodes. Hence P ′ computes the same polynomial as P and the properties 1

and 2 hold as required.

Using Lemma 14 we obtain the desired parameterized version of depth reduction to

depth four circuits:

Lemma 15. Let g(x1, . . . , xn) be a multilinear polynomial of degree k computed by a

syntactic multilinear branching program P of size S. Then

g(x1, . . . , xn) =
T∑
i=1

√
k∏

j=1

fi,j (5.5)

for some T = SO(
√
k) and fi,j is a degree

√
k multilinear polynomial computed by a

sub-program of P for i ∈ {1, . . . , T}, j ∈ {1, . . . ,
√
k}.

Proof. The construction follows from a simple divide and conquer subdivision of the

program. By Lemma 14, we assume that P is homogeneous and has depth k + 1.

Let Li be the set of nodes at layer i of the program P , for 0 ≤ i ≤ k+ 1. We divide

P into blocks of
√
k layers. Each block is a collection of sub-programs between the

nodes in the first and last of the
√
k layers. Let W = L√k×L2

√
k× · · · ×L(

√
k−1)

√
k be

the total number of ways in which all these blocks can be aligned with each other. The

final polynomial is sum, over all possible alignments, of the product of a sequence of
√
k sub-programs, one from each block:

g(x1, . . . , xn) =
∑

(i1,...,i√k−1)∈W

[s, i1]P ·

√
k−2∏
m=1

[im, im+1]P · [i√k−1, t]P (5.6)

Every sub-program is a sum of products of linear polynomials. Hence, looking at the

expression, we note that it can be computed by a depth-4 circuit. Considering the

number of nodes in each layer to be upper bounded by S, we have |W | = T = SO(
√
k).

Thus we are able to expand g as in the statement of the Lemma.

Now to prove the claimed lower bound for the size of strict interval ABPs, all we

need is given a polynomial f computed by an strict interval ABP of size S, an equi-

partition ϕ of X such that rankϕ(f) << nk.

88

Lemma 16. Let f be a polynomial computed by a strict interval ABP of size S. Then

there is a partition ϕ such that rankϕ(f) ≤ SO(
√
k)n
√
k.

Proof. Without loss of generality, assume that P is a strict interval ABP with respect to

the identity permutation. Let ϕmid : X → Y ∪ Z be a suitable equi-partition such that,

ϕmid(xi) =

yi, if i ≤ n/2,

zi−n/2 otherwise.

We consider the representation for f as in (5.6). Then for every 1 ≤ i ≤ T , for

all but one m, we have either ϕmid(var([im, im+1])) ⊆ Y or ϕmid(var([im, im+1])) ⊆ Z.

Now, considering (5.5), rankϕ(fij) ≤ n as there are n possibilities for a variable in

var([im, im+1]P) which is mapped to a different partition by ϕmid than the other vari-

ables, such that the sub-program [im, im+1]P contributes a rank of 1.

Therefore, rankϕmid
([s, i1]P ·

∏√k−2
m=1 [im, im+1]P · [i√k−1, t]P) ≤ n

√
k, for every ij ∈

Lj
√
k.

By sub-additivity of rankϕ, we have rankϕ(f) ≤ SO(
√
k)n
√
k for ϕ = ϕmid.

The required lower bound is immediate now.

Corollary 4. Any strict-interval ABP computing the polynomial f has size nΩ(
√
k).

Proof. Follows from Theorem 8 and Lemma 16.

5.4.4 Rank bound for ROPs by Graph representation

The reader might be tempted to believe that the lower bound arguments in the preceding

sections might be applicable to more general models such as sum of ROFs and sum of

ROABPs or even multilinear formulas. However, as we have seen in Section 5.3, there

is a sum of three ROFs that has high rank under every partition. Thus our approach

using rankϕ as a complexity measure is unlikely to yield lower bounds for even sum

of ROFs, which is in contrast to the classical setting, where exponential lower bounds

against models such as sum of ROFs and sum of ROABPs follow easily.

89

In this section, we develop a new method of analysing rank of degree k polynomials

computed by ROFs. We look at the order in which variables appear in the in-order

traversal of an ROF. Thus we read the variables in the sum of ROFs with a restricted

ordering.

Let p ∈ F[X] be the polynomial computed by a ROF Φ. We want to construct

a graph Gp = (X,Ep) corresponding to p so that rankϕ(p) can be related to certain

parameters of the graph. For this, we add edges or a sequence of edges to the graph

according to the type of polynomial each gate computes. We define some types of gates

in the formula as follows.

Definition 24. (Types of gates in a ROF) Let Φ be a ROF. A gate v in Φ is said to be

a maximal-degree-two gate if v computes a degree two polynomial, and the parent of v

computes a polynomial whose degree is strictly greater than two.

A gate v is said to be a maximal-degree-one gate if v computes a linear form and

the parent of v computes a polynomial of degree strictly greater than one.

A gate v at depth 1 is said to be a high degree gate if the degree of the polynomial

computed at v is strictly greater than two.

Let V2 denote the set of all maximal-degree-two gates in Φ, V1 denote the set of all

maximal-degree-one gates and V0 denote the set of all high degree gates in Φ at depth

one. Let atomic(Φ) = V0 ∪ V1 ∪ V2. The following is a straightforward observation:

Observation 5. Let Φ be an ROF and v be a maximal-degree-two gate in Φ. Then the

polynomial computed by Φv is of the form Φv =
∑s

i=1 `i1`i2 , where `ij 1 ≤ i ≤ s,

j ∈ {1, 2} are variable disjoint linear forms for some s > 0 such that each of the `ij is

dependent on at least one variable.

Defining paths and constructing Gp

For a linear form ` =
∑r

j=1 αijxij , let path(`) be the simple undirected path comprised

of edges (xi1 , xi2), (xi2 , xi3), . . . , (xir−1 , xir).

In the case when r = 1, path(`) is just single vertex. Similarly, for a subset

S ⊆ X of variables, let path(S) denote the path constituted by the edges (xi1 , xi2),

(xi2 , xi3), . . . , (xir−1 , xir) where S = {xi1 , . . . , xir}, i1 < i2 < . . . < ir.

90

For two variable disjoint linear forms ` and `′, let path(`, `′) be the path obtained by

connecting the last vertex in path(`) to the first vertex of path(`′) by a new edge.

Now, we define a graph Gp = (X,Ep) where vertices correspond to variables xu ∈

X and the set of edges Ep defined as follows.

For each v ∈ atomic(Φ) we add the following edges to Ep:

Case 1 Φv =
∑r

i=1 `i1`i2 for some r > 0 add path(`i1 , `i2) to Gp for every 1 ≤ i ≤ t.

Case 2 Φv =
∏

i∈S xi or Φv =
∑

i∈S cixi, where S ⊆ X , cis are constants from F, add

path(S) to Gp.

It may be noted that the graph Gp is not unique as it depends on the given minimal

ROF Φ computing f . Now that we have an underlying graph, we view the equi-partition

ϕ on the variables X of the polynomial as a coloring, and analyse the rank of the poly-

nomial computed by Φ using the measure of number of bichromatic edges, as defined

in Section 5.3.

Lower bound using Gp

In the following, we show that for a given partition ϕ, we bound the rankϕ(p) in terms

of the number of bichromatic edges beϕ(Gp).

Theorem 13. Let p ∈ F[x1, . . . , xn] be a multilinear polynomial of degree k computed

by a ROF Φ. Then, for any equi-partition ϕ : X → Y ∪ Z, rankϕ(p) ≤ (4beϕ(Gp))
k
2 .

Proof. The proof is by induction on the structure of Φ. The base case is when the

root gate of Φ is in atomic(Φ). We prove the bound for all the three kinds of gates in

atomic(Φ) and the inductive argument follows.

Consider a gate v ∈ atomic(Φ).

Case 1 Φv =
∑

(i,j)∈S xixj . If ϕ(xi), ϕ(xj) are not in the same partition, then each

monomial xixj contributes 1 towards rankϕ(p). At the same time, the edge

(xi, xj) added to Ep is bichromatic, so each monomial contributes 1 towards the

measure beϕ(Gp) as well.

91

Case 2 Φv =
∑

(a,b)∈T `a`b. If, for some xi, xj ∈ var(`a), ϕ(xi), ϕ(xj) are in different

partitions, then the linear form `a contributes 2 towards rankϕ(`a). If the same

holds true for `b, then `a`b would together contribute 4 towards rankϕ(p) and ≥ 2

towards the measure beϕ(Gp).

Case 3 Φv =
∑

i∈W1
cixi or Φv =

∏
i∈W2

xi for some W1,W2 ⊆ X . The first case

has been considered already. For the second case, if ∃xa, xb ∈ W2 such that

ϕ(xa), ϕ(xb) are in different partitions, the polynomial computed by the gate v

will contribute a 1 towards rankϕ(p) and at least 1 towards beϕ(Gp), otherwise it

contributes 0 towards both measures.

Thus we have verified that the statement is true when the root gate v of Φ is con-

tained in atomic(Φ). Suppose p = p1 op p2 for op ∈ {+,×} where p1 and p2 are

variable disjoint and are computed by ROFs. By induction hypothesis, rankϕ(pj) ≤

(4beϕ(Gpj))
kj
2 where kj = deg(fj). As beϕ(Gp) = beϕ(Gp1) + beϕ(Gp2) and k =

k1 + k2 (op = ×) or k = max{k1, k2} (op = +) we have, rankϕ(f) ≤ (4beϕ(Gp))
k
2 as

required.

Recall that the bisection of an undirected graph G = (V,E) is a set S ⊆ V such

that |S| = |V |/2. The size of a bisection S is the number of edges across S and S,

i.e., |{(u, v) | (u, v) ∈ E, u ∈ S, v /∈ S}|. The following is an immediate corollary to

Theorem 13:

Theorem 14. Let G be a graph on n vertices such that there is a bisection of G of

size n1−ε. Suppose p1, . . . , ps be ROFs such that Gpi is a sub-graph of G. Then, if

p = p1 + · · ·+ ps we have s = (nΩ(k)/t(k)), where t is a computable function on k.

Proof. Let C = (S, S) be the bisecting cut and size(C) denote the number of edges

across the cut. We fix an equi-partition ϕ : X → Y ∪ Z as follows:

ϕ(xi) ∈

Y, if i ∈ S,

Z, otherwise.

Then by Theorem 13, rankϕ(pi) ≤ (4beϕ(Gpi))
k
2 . Since Gpi is a sub-graph of G, we

have beϕ(Gp)) ≤ size(C) ≤ n1−ε. Therefore, rankϕ(pi) ≤ Ok(n
(1−ε)k/2). By sub-

92

additivity, we have rankϕ(f) ≤ sOk(n
(1−ε)k/2) where Ok is upto a factor that depends

only on a function of k. By Theorem 8, we get s = Ω(nεk/2).

5.5 Conclusion

Our results demonstrate the challenges in translating classical arithmetic circuit lower

bounds to the parameterized setting, when the degree of the polynomial is the parameter.

We get a full rank polynomial that can be computed by depth four arithmetic circuits of

FPT size, whereas in the classical setting, full rank polynomials cannot be computed

by multilinear formulas of polynomial size Raz (2009).

This makes the task of proving parameterized lower bounds for algebraic computa-

tion much more challenging task. Given the application of polynomials, whose degree

is bound by a parameter, in the design of efficient parameterized algorithms for many

counting problems, we believe that this is a worthy research direction to pursue.

Further, we believe that our results are an indication that study of parameterized

complexity of polynomials with degree as the parameter could possibly shed more light

on the use of algebraic techniques in parameterized algorithms.

93

CHAPTER 6

ON A GENERATOR BY SHPILKA AND

VOLKOVICH

6.1 Introduction

The problem of Polynomial Identity Testing (PIT in short) is, given a polynomial, to

test if a polynomial is identically zero i.e., whether a polynomial has no non-zero coef-

ficients for any of its monomials. Naturally, the way in which the input polynomial is

represented plays a crucial role in determining the complexity of PIT . The input poly-

nomial f can be represented by an explicit list of coefficients of all possible monomials

in n variables. Since the number of all possible monomials in n variables is 2n, such

a list is of exponential in size. To solve the problem of PIT on a polynomial with this

representation would involve searching for a non-zero coefficient in this list, which will

take linear time in terms of input size, yet in terms of n, the complexity will be expo-

nential (O(2n)). This is an extreme case since the list representation is the largest size

representation of a polynomial.

The other extreme is the black-box setting where f is given as an evaluation oracle,

i.e., if the algorithm queries the black-box with values a ∈ Fn, the black-box returns

f(a), the value of the polynomial f evaluated at a. Testing identity of a polynomial

represented by a black-box is well-studied. A randomized polynomial time algorithm

for PIT , where the polynomial is represented by a black-box, has been obtained by

Ore (1922), and later DeMillo and Lipton (1978), Schwartz (1980) and Zippel (1979).

However, obtaining a deterministic algorithm for black-box PIT remains highly elusive

and challenging task. As a partial explanation for the difficulty, Kabanets and Impagli-

azzo (2004) showed that deterministic sub-exponential algorithms for black-box PIT

would imply circuit lower bounds.

There are various other implicit representations of polynomials in the form of arith-

metic circuits, algebraic branching programs etc.between the two above-mentioned ex-

tremities. In the study of PIT , there are two major representations that are frequently

considered, the first being the black-box model under the assumption that polynomial

represented by the given black-box has a small circuit representation that is unknown

to the algorithm. The second way is to represent the input polynomial by an arithmetic

circuit computing it, also known as white-box representation.

For the first case of black-box representation, Klivans and Spielman (2001) and

later Bläser et al. (2009) obtained efficient deterministic algorithm for when the input

polynomial had small (polynomial sized) depth-2 circuits (known as i.e., sparse poly-

nomials. Generalizing this to depth-3 circuits turned out to be extremely difficult and

efficient algorithms could only be obtained by restricting the top sum gate fan-in (Dvir

and Shpilka (2007)) and successive results could only relax the bound on the top fan-

in (Kayal and Saraf (2009), Saxena and Seshadhri (2010)). The depth reduction by

Agrawal and Vinay (2008) to depth-4 also applies to the case of black-box PIT by giv-

ing an efficient black-box PIT for unrestricted arithmetic circuits of polynomial size,

given an efficient black-box PIT for a depth-4 circuit of sub-exponential size. This jus-

tifies the difficulty of the problem of obtaining efficient black-box PIT for circuits of

depth-3 and 4, since such a result can be used to obtain PIT for all polynomials with a

small (polynomial sized) arithmetic circuit.

One of the approaches for obtaining deterministic algorithms for black-box PIT is

to derandomize the randomized algorithm given by Schwartz (1980) and Zippel (1979).

The Schwartz-Zippel algorithm randomly samples a suitably sized subset S of the set of

all possible inputs to the polynomial f such that if f is not a zero polynomial, then f(a)

is non-zero on a point a ∈ S with high probability. For this purpose, S must contain

sufficient number of elements from the domain Fn that are not roots of the polynomial

f . Such a set S is known as the hitting set of the polynomial. Formally, a hitting set for

a class of polynomials C is defined as follows.

Definition 25. A hitting set H for a class of polynomials C is a collection of witness

assignments a = (a, . . . , an) such that for any polynomial f ∈ C, ∃a ∈ H such that

f(a) 6= 0. In other words this collection of assignments hits every polynomial in C.

It might be noted that the size of a hitting set H and the complexity of its construc-

tion are crucial in determining the usefulness ofH. For example, a hitting setH that is

constructible in time polynomial in n and d (degree of the polynomials in C), would im-

ply a deterministic polynomial time algorithm for black-box PIT of polynomials from

95

the class C. Thus the study of hitting sets for various classes of polynomials is one of

the approaches for obtaining efficient deterministic algorithms for PIT .

It is easier to interpret a hitting set as the image set of a family of polynomial maps.

Such polynomial maps are referred to as hitting set generators in the literature (Shpilka

and Yehudayoff (2010)). Formally, a hitting-set generator is defined as follows:

Definition 26. A hitting-set generator is a function G : Ft → Fn that preserves the

identity of polynomials in a class C i.e., f 6≡ 0 ⇐⇒ G(f) 6≡ 0. G can be viewed as

the n-tuple (G1, . . . , Gn), where each Gi : Ft → F has individual degree for each of its

variables at most n. Therefore, G(f) has degree bounded by nd where d = degree(f).

Any hitting-set generator has two parameters, n and t. The question of testing

identity of a n-variate polynomial f ∈ C boils down to testing the identity of G(f), a

polynomial on t variables. Here t is typically a function of n, such that t = δ(n)� n.

The study of design of hitting set generators for obtaining PIT has received wide

attention. Many hitting set generators defined in the literature have been based on the

Kroenecker substitution, which converts any n-variate polynomial f ∈ F[X] to a uni-

variate polynomial by substituting xi with x2i . We can then use the derandomized

Schwartz-Zippel algorithm on the resulting univariate polynomial, which takes poly-

nomial time. An example of Kroenecker substitution being used for testing identity is

that of a sparse polynomial identity testing algorithm given by Klivans and Spielman

(2001). However, it is clear that this results in exponential blow-up in the degree of the

resulting polynomial, hence this technique cannot be directly extended to classes bigger

than that of sparse polynomials.

Agrawal et al. (2015) defined a hitting-set generator using a controlled Kroenecker-

like substitution for ROABPs. Subsequent PIT results in Gurjar et al. (2017a), Gurjar

et al. (2017b) used variations of the substitution in Agrawal et al. (2015) to construct

hitting set generators for constant-width ROABPs and sum of constant-many ROABPs

respectively.

There have been many constructions of hitting set generators without the use of

Kroenecker substitutions. For example, Dvir and Shpilka (2007) constructed a hitting-

set generator for bounded top fan-in depth-3 circuits using locally-decodable codes.

Shpilka and Volkovich (2009) defined a hitting-set generator and used it to obtain deter-

96

ministic quasi-polynomial time black-box PIT algorithm for the sum of k pre-processed

read-once formulas. Consequently, Minahan and Volkovich (2018) improved this result

to a polynomial-time algorithm.

In this chapter we study the Shpilka-Volkovich generator and the results by Minahan

and Volkovich using the generator. We now formally define the Shpilka-Volkovich

generator as follows.

Definition 27 (Shpilka and Volkovich (2009)). Let n be the number of variables and

a1, a2, . . . , an be distinct elements in the field F. Let Gi
n,k ∈ F[y1, y2 . . . yk, z1, z2 . . . zk]

be the polynomial defined as follows:

Gi
n,k(y1, y2 . . . yk, z1, z2 . . . zk) =

k∑
j=1

Li(yj)zj, where Li(x) =

∏
j 6=i(x− aj)∏
j 6=i(ai − aj)

,

Li(x) are Lagrangian Interpolation polynomials, and Li(aj) = 1 if i = j. The generator

Gn,k is defined as Gn,k
∆
= (G1

n,k, . . . G
n
n,k).

However, when n is clear from the context, we denote Gn,k by Gk. So, in the case

of Shpilka Volkovich generator (SV-generator in short) , t = 2k.

Since the time of its design, the SV-generator has received wide attention in the

literature. Anderson et al. (2015) obtained quasi-polynomial time algorithm for ACIT

(i.e., white-box PIT) on multilinear read-k formulas using the SV-generators as one

of the ingredients. Minahan and Volkovich (2018) use the SV-generator for obtaining

a complete black-box deterministic algorithm for reconstructions of read once polyno-

mials, while Jansen et al. (2010) use it to obtain quasi-polynomial time deterministic

PIT for occur-once branching programs, a model defined by the authors as a restricted

version of ROABP where each variable is a label to only one edge.

In the parameterized setting, Chauhan and Rao (2015) modified the Schwartz-Zippel

algorithm (Schwartz (1980); Zippel (1979)) to obtain a randomized FPT-time parame-

terized PIT algorithm that uses at most g(k) log n random bits, where the parameter k

is the syntactic degree of the polynomial. The primary component in the algorithm by

Chauhan and Rao (2015) is the hitting set generator defined by Shpilka and Volkovich

(2009). The main observation in Chauhan and Rao (2015) is as follows:

Proposition 6. (Chauhan and Rao (2015)) Let f ∈ F[X] be a polynomial of degree k.

97

Then f ≡ 0 ⇐⇒ Gk(f) ≡ 0, where Gk is the SV-generator.

In Ghosal et al. (2017), we give an ACIT algorithm for depth-3 circuits parameter-

ized by the degree of the polynomial. This is done by using SV-generator on depth-3

circuits to yield a small sum of product of univariate polynomials, for which PIT is

known due to Saxena (2008).

The applications of SV-generator for obtaining deterministic algorithms for PIT on

special classes of circuits leads to the following question: Can the existing hitting set

generators be used to obtain deterministic parameterized algorithms for PIT for larger

classes of circuits? More specifically, we ask: what are the classes of circuits where

SV-generator can be used to obtain efficient deterministic PIT algorithms?

In this chapter, we consider the approach of obtaining an efficient deterministic

algorithm for PIT on a class C of circuits by using a hitting set generator G such that

for every f ∈ C, G(f) is in a class of circuits with known deterministic PIT algorithms,

akin to the PIT algorithm for depth-3 degree-parameterized circuits given by Ghosal

et al. (2017). This approach for obtaining PIT using the SV-generator does not work

when we consider larger classes of circuits. This is because, for any polynomial f

with large rank of the polynomial coefficient matrix, the coefficient matrix forG(f) has

large rank with high probability. Our proof exploits the structure of the SV-generator.

We also generalize this result for families of hitting set generators that are similar to the

SV-generator.

Our result indicates that the classes of circuits that contain polynomials whose poly-

nomial coefficient matrices have full rank under every partition are perhaps the hardest

instances for obtaining deterministic algorithms for ACIT.

6.2 Chapter Outline

Our main result is the rank preservation property of SV-generators, which we prove in

Section 6.5.

Theorem 19. Let f ∈ F[x1, . . . , xn] be a polynomial of degree ≤ k. Let g = G2k(f).

Then,

∃ϕ, rank(Mfϕ) ≥ R =⇒ Prϕ′ [rank(Mgϕ′) = R] ≥ Ω(1/22k),

98

where the probability is taken over the uniform distribution over the set of all partitions

of the variables in g into two parts of equal size.

We show that the property also applies to generators similar to the SV-generator.

Corollary 6. Let H = (Hn,2t)1≤2t≤n be an SV like hitting set generator such that Hn,2t

is a hitting set generator for degree t polynomials on n variables. Let f = f(x1, . . . , xn)

be any polynomial of degree t/2 and h = H(f). Then,

∃ϕ, rank(Mfϕ) ≥ R =⇒ ∃ϕ′rank(Mhϕ′) ≥ R.

In Section 6.4 we obtain black-box PIT against two multilinear classes of occur-

once formulas with powering gates and clustered read-2 formulas.

Theorem 16. Let f ∈ F[x1, . . . , xn] be a polynomial computed by a polynomial-sized

occur-once formula with squaring gates F , f is non-constant. Then G1(f) is also non-

constant i.e., G1 is a hitting-set generator for f .

Theorem 18. G7 is a hitting-set generator for the class of clustered read-2 formulas

defined in Definition 31.

In Section 6.3 we describe the properties of SV-generator that are useful throughout

this chapter, especially in obtaining the PIT results in Section 6.4.

6.3 Properties of the Shpilka Volkovich Generator

We recall that the SV-generator is denoted by Gk where Gk : F2k → Fn, k < n. For

a polynomial f , Gk(f) is the image of f under Gk, i.e., Gk(f) = f(G1
k, . . . , G

n
k). The

parameter k is usually the degree of the polynomial f for which Gk is a hitting-set

generator, but the generator also works for any other value of k < n. The property of

SV-generator that follows directly from its definition is as follows.

Lemma 17. Let f ∈ F[X] be a n-variate polynomial of degree d and let Gk(f) 6≡ 0.

Then f has a hitting-set of size (nd)O(k).

99

Proof. Since f is an n-variate polynomial of degree d, the polynomialGk(f) has degree

nd by Definition 26. Since Gk(f) is a 2k-variate polynomial, and the image of Gk

contains the hitting-set for f , f has a hitting-set of size (nd)O(k).

The size of the hitting-set of the polynomial Gk(f) is (nd)2k when k is the degree

of the original polynomial. Therefore, the size of the hitting-set is polynomial in n if

k is a constant, and d = poly(n). Hence, if Gk, for a constant k, is the hitting-set

generator for a class of polynomials C, then we have polynomial time deterministic PIT

for C. For example, the authors in Minahan and Volkovich (2018) obtain a characteri-

sation of ROFs after applying the SV-generator on a ROF with k = 1, and thus obtain

polynomial-time deterministic PIT for ROFs and the sum of constant-many ROFs.

The next property follows as a consequence of the previous lemma:

Lemma 18. If Gk, k > 0 is a hitting-set generator for a class of n-variate polynomials

C, then G`, n > ` > k is also a hitting-set generator for C.

Proof. The image of G`, Im(G`) contains Im(Gk) for k < ` by Definition 26 and

Lemma 17.

The following property follows directly from the definition of Gk:

Lemma 19. Let f1, f2 be polynomials on disjoint sets of variables and Gk be the SV-

generator with the parameter k. Then Gk(f1 + f2) = Gk(f1) +Gk(f2).

Proof. The proof follows from Definition 27, since Gk is linear over the monomials in

a polynomial i.e., Gk(p) =
∑

m∈M cmGk(m) where p =
∑

m∈M cm ·m, M being the

set of monomials with non-zero coefficients in p.

In Section 6.5, we study the relationship of SV-generator with the complexity mea-

sure of rank of the coefficient matrix of a polynomial. It is also easy to see that any

function that is linear over the monomials of a polynomial and preserves the rank for

coefficient matrix for some partition of its variables is a hitting-set generator. We state

this formally as follows.

Theorem 15. Consider a function H : Ft → Fn, H = (H1, . . . , Hn) where Hi : F →

Ft, H(xi) = Hi. If the rank of a polynomial p ∈ F[X] from a class C under some

100

partition ϕ : X → A∪B is R, and there is a ϕ′ : {w1, . . . , wt} → Y ∪Z such that the

rank of H(p) is Ω(R), then H is a hitting-set generator for C.

Proof. The proof is by contradiction. Let us assume H is not a hitting-set generator

i.e., p 6≡ 0, H(p) ≡ 0.

In that case, under an arbitrary partition ϕ′, rankϕ′(H(p)) = 0, which violates the

given condition that the mapping H preserves rank.

For further clarification, we also consider the case where p ≡ 0, H(p) 6≡ 0. Let

p =
∑

m∈M cimi, where M is the set of monomials of p, ∀i, ci are constants from the

field. By definition of H , H(p) =
∑

m∈M ciH(mi).

Since H(p) 6≡ 0, there must exist at least one i, ci 6= 0. As the monomials in M are

distinct, this implies p 6≡ 0, which is a contradiction.

Hence, H is a hitting-set generator.

We could show that the converse of this statement is true for the Shpilka-Volkovich

generator (Theorem 19) and for other generators that behave similar to the SV-generator

(Corollary 6) in Section 6.5.

6.4 Application of SV-generator: PIT for small multi-

linear models

The characterisation of ROFs obtained by Minahan and Volkovich (2018) being simple

and elegant, it seemed natural to attempt to extend it to algebraic circuit models slightly

larger than the class of ROFs. To this end, we first define a modified model of read-once

formulas, occur-once formulas with squaring gates, which we define in Definition 28.

We were able to obtain and use a characterisation of Gt(f) similar to the one given

for ROFs by Minahan and Volkovich (2018), for our model. This yields an efficient

black-box PIT for occur-once formulas with powering gates. We also define a second

model in Definition 31 which reads the input variables at most twice. We, then, obtain

an efficient black-box PIT for this model using techniques similar to the PIT given in

Minahan and Volkovich (2018).

101

6.4.1 PIT for Occur-once formulas with powering gates

In this section, we first define the model of occur-once formulas with squaring gates.

We later generalise the model to include powering gates which compute any power

p ≥ 2 of their input, and show that our PIT algorithm holds for this generalised model

as well.

Definition 28. Let F be a syntactically multilinear formula such that every input vari-

able labels exactly one input gate. If g is a gate with children g1, g2 such that g = g1+g2

or g = g1 × g2, then the gates g1, g2 compute polynomials that are variable disjoint.

Assume, without loss of generality, that along any root to leaf path in F , no two con-

secutive gates are both sum gates or product gates. Let h be a squaring gate in F , such

that h = h2
1, h1 being its input, let h2 be the ancestor of h. Then, h1, h2 are not squaring

gates.

We denote such a formula F by the term occur-once formula with squaring gates.

We note that since the sum and product gates compute addition or multiplication of

input polynomials defined on disjoint sets of variables, a squaring gate h has a unique

ancestor h2. Successive sum gates or product gates along a path can be compressed

to a single sum gate or a single product gate respectively, to yield a smaller formula

computing the same polynomial. Thus every squaring gate lies between two gates that

can be sum or product gates. We note the following statement about this model:

Observation 6. The formula F can be constructed from an underlying read-once for-

mula F ′ such that squaring gates occur only between consecutive sum and product gates

along a root to leaf path in F ′.

We now give a black-box PIT algorithm for this model using the SV-generator and

its characterisation given by Minahan and Volkovich (2018).

Minahan and Volkovich (2018) give a characterisation of G1, where Gk is the

Shpilka-Volkovich generator, on a monomial m, G1(m). We need the following defini-

tion in order to use the characterisation obtained by them.

Definition 29. Let a1, . . . , an ∈ F be the constants used in Definition 27. Then, for

I ⊆ [n], we define the polynomial ΦI(w) =
∏

i∈I(w − ai), and Φ∅(w) = 1.

102

Using the above polynomial, the required characterisation is as follows:

Proposition 7 (Minahan and Volkovich (2018)). If P ∈ F[X] is a homogeneous poly-

nomial of degree d, where each variable xi has individual degree upper-bounded by δ,

then there is a polynomial P ′(y) of degree at most δ(|var(P)| − 1) such that

G1(P) = zdP ′(y) · Φ(d−δ)
[n] (y) · Φδ

[n]\var(P)(y).

In particular, there is a polynomial P ′(y) of degree at most d(|var(P)| − 1) such that

G1(P) = zdP ′(y) · Φd
[n]\var(P)(y).

The authors use this characterisation in an inductive argument to prove G1 as the

hitting-set generator for pre-processed ROFs i.e., ROFs where every variable xi is re-

placed by Ti(xi), a univariate polynomial in xi. We use the same approach to obtain de-

terministic polynomial-time PIT for the occur-once formula with squaring gates model.

We show that the result can be extended to occur-once formula with powering gates

computing powers larger than 2 of their inputs.

Theorem 16. Let f ∈ F[x1, . . . , xn] be a polynomial computed by a polynomial-sized

occur-once formula with squaring gates F , f is non-constant. Then G1(f) is also non-

constant i.e., G1 is a hitting-set generator for f .

Proof. The proof is by induction on the depth D of the gates in the formula F .

Base Case: D = 1. Then f is a sum or product of input variables or the square of

an input variable. Hence, f =
∑n

i=1 cixi + c0, f = c1

∏
i∈S xi + c0 for some S ⊆ [n]

or f = c1x
2
1 + c0. We have G1(f) |y=a1= c′1z1 + c0, G1(f) |y=a1= c′1z

|S| + c + 0 or

G1(f) |y=a1= c1z
2
1 + c0, all of which are non-constant polynomials.

Inductive Step: For the inductive hypothesis, we assume that the statement of the

theorem is true for any sub-formula of F of depth at most (D − 1). By definition, for a

gate f at depth D, we have three cases, f = f 2
1 + f 2

2 or f = f 2
1 f

2
2 + c0 where f1, f2 are

variable disjoint, or f = f 2
1 .

The inductive step easily follows from the inductive hypothesis for the last two

cases. When f = f 2
1 , G1 is a hitting-set generator for f if and only if G1 is a hitting set

103

generator for f1. This holds true, since, by the inductive hypothesis, G1 is a hitting-set

generator for f1 and f is non-constant if and only if f1 is non-constant.

Let f = f 2
1 f

2
2 + c0, where f1, f2 are variable disjoint. By the inductive hypothesis,

G1 is a hitting-set generator for both f1, f2, and G1(f) = G1(f 2
1)G1(f 2

2) + c0. Let

f1, f2 be non-constant polynomials. Then both G1(f1), G1(f2) are non-constant, and

G1(f) is also non-constant. If at least one of f1, f2 is a constant, say f2 = c then

f = c′f 2
1 + c0, c

′ = c2, and we have G1 as the hitting-set generator for f by the same

argument as the previous case.

Finally, we consider the case f = f 2
1 + f 2

2 . We assume f 6= 0. We have, for

d = degree(f), some i, 0 ≤ i ≤ d, for which we can assume that the ith degree

homogeneous component of f , Hi(f) = Hi(f
2
1) +Hi(f

2
2) 6≡ 0.

Applying G1 on Hi(f), we get:

G1(Hi(f)) =
i∑

j=0

G1(Hj(f1))G1(Hi−j(f1)) +
i∑

j=0

G1(Hj(f2))G1(Hi−j(f2)).

Using Theorem 7, we expand each term of the form G1(Ha(f)), a > 0 on the right-

hand side as follows:

G1(Hi(f)) =
i∑

j=0

(zjP
(1)
j (y)Φi

[n]\V1
)(zi−jP

(1)
i−j(y)Φi

[n]\V1
)

+
i∑

j=0

(zjP
(2)
j (y)Φi

[n]\V2
)(zi−jP

(2)
i−j(y)Φi

[n]\V2
)

= zi

(
Φ2i

[n]\V1

i∑
j=0

P
(1)
j (y)P

(1)
i−j(y) + Φ2i

[n]\V2

i∑
j=0

P
(2)
j (y)P

(2)
i−j(y)

)

= Φ2i
[n]\V1∪V2

zi
(
Φ2i
V2
P (1)(y) + Φ2i

V1
P (2)(y)

)

Now, Φ2i
V2

can only be cancelled out by P (2)(y) as the roots of Φ2i
V1

and Φ2i
V2

are all

different. But deg(P (2)) ≤ i · (|V2| − 1) whereas deg(Φ2i
V2

) = 2i · |V2| > i · (|V2| − 1).

Hence Φ2i
V2
P (1)(y) + Φ2i

V1
P (2)(y) 6= 0, and the coefficient of zi is non-constant.

Thus, G1 is a hitting set generator for f .

This proof can be generalised for a powering gate of any degree p ≥ 2.

104

Corollary 5. Let f ∈ F[x1, . . . , xn] be a polynomial computed by a polynomial-sized

occur-once formula with powering gates with maximum fan-in p, f is non-constant.

Then G1(f) is also non-constant i.e., a hitting-set generator for f .

Proof. The inductive argument will follow akin to Theorem 16 for p > 2. We have

Φpi
V2
P (1)(y) + Φpi

V1
P (2)(y) 6= 0. Since deg(P (2)) ≤ i(|V2| − 1) and deg(Φpi

V2
) = pi|V2| >

i(|V2| − 1), P (2)(y) cannot cancel out Φpi
V2

. Hence, we have deterministic PIT for the

class of Occur-once formulas with powering gates of fan-in bounded by p, p ≥ 2.

Since the model of occur-once formula with powering gates is a generalisation of

the ROFs using powering gates, we now aim to extend the existing efficient black-box

PIT for the sum of ROFs model to a model with higher number of reads of its variables.

6.4.2 PIT for Clustered read-2 formulas

The black-box PIT obtained by Shpilka and Volkovich (2008) for the sum of k ROFs

model was by setting the parameter t = 3k + log n for the SV-generator Gt such that

Gt is an efficient hitting-set generator for the sum of k ROFs model, given that Gt, t =

log n is an efficient hitting-set generator for the class of ROFs. Later, Minahan and

Volkovich (2018) reduced the parameter t to 3k + 1 for Gt to be an efficient hitting-set

generator for sum of k ROFs. We obtain a deterministic PIT for a restricted version

of read-2 formulas where the lowest level gate computing a read-twice polynomial is

restricted to be a sum of 2 ROFs. Our result uses the same techniques as in Shpilka and

Volkovich (2008), Minahan and Volkovich (2018). We first define three types of gates,

which will constitute a clustered read-2 formula.

Definition 30. (Types of Gates) Let F be a syntactically multilinear formula. The three

types of gates in F are as follows:

Type 1: All product gates g such that g = g1 × g2 + c, where c is a a constant and

var(g1) ∩ var(g2) = ∅, i.e., the input polynomials g1, g2 are variable disjoint.

Type 2: All sum gates h such that h = h1 + h2, where var(h1) ∩ var(h2) = ∅, i.e., the

input polynomials h1, h2 are variable disjoint.

105

Type 3: All sum gates h such that h = h1 + h2, where var(h1) ∩ var(h2) 6= ∅ and h is the

only gate of type 3 on all root to leaf paths containing h. Since every gate in a

ROF is either of type 1 or of type 2, and all h to leaf paths contain gates of only

type 1 or 2, the sub-formula rooted at h is a sum of two ROFs h1 and h2.

We formally define our model as follows.

Definition 31. A read-2 syntactically multilinear formula F is called a clustered read-2

formula is every gate in F is of the types 1, 2 or 3 as defined in Definition 30.

Jansen et al. (2010) show that Glogn+1 also works as a hitting-set generator for

occur-once ABPs. The straightforward application of G1 does not work on OOABPs

since we will be substituting each label aixi + bi with aiGi
1 + bi which is a polynomial

on the same variables y, z as ajGj + bj, j 6= i, ai, aj, bi, bj being constants from the

field.

We will now visit the PIT result obtained for our model of clustered read-2 formulas.

The following theorem was proven by Shpilka and Volkovich:

Theorem 17. If G is a hitting-set generator for ROFs, then G + G3k is a hitting-set

generator for sum of k-many ROFs.

By Minahan and Volkovich (2018), G3k+1 is seen to be the hitting-set generator for

the sum of k-many ROPs. By Definition 31, we substitute k = 2 in G3k+1 and use other

properties of SV-generator to obtain the following polynomial-time deterministic PIT

algorithm for clustered read-2 formulas.

Theorem 18. G7 is a hitting-set generator for the class of clustered read-2 formulas

defined in Definition 31.

Proof. We knowG1 is a hitting-set generator for ROFs, andG7 is a hitting-set generator

for a sum of two ROFs defined on the same set of variables. By the property of the

SV-generator given by Lemma 17, if Gk is a hitting-set generator for a class C ′ of

polynomials, G` for any ` > k is also a hitting-set generator for C ′. Hence, G7 is also a

hitting-set generator for ROPs.

Given a clustered read-2 formula F , by Definition 31, we have gates of types 1

(product gate), 2 (sum of variable disjoint polynomials), and 3 (sum of two ROFs). We

106

note that the children of a gate of type 3 are of type 1 or 2 and compute read-once

polynomials. Substituting k = 2 in the expression for the parameter t = 3k + 1 given

by Minahan and Volkovich (2018), G7 is the hitting-set generator for any polynomial

computed by a gate in F of type 3.

Let us consider a gate H of type 1 or 2. If the inputs to H are ROPs on disjoint sets

of variables, the sub-formula rooted at H is also read-once. By Shpilka and Volkovich

(2008), G1 is a hitting-set generator for the polynomial computed by H . Thus, G7 is

also a hitting-set generator for the ROP computed by the gate H by Lemma 17.

We need to argue G7 is a hitting-set generator for the polynomial computed by the

gate H even when at least one of its inputs is a read-2 polynomial (i.e., at least one of

the inputs is a gate H ′ of type 3, or a gate H ′′ of type 1 or 2 that lies on a path from root

to a gate of type 3). We proceed to prove that G7 is a hitting-set generator for fH , the

polynomial computed by H .

When H is of type 1 and at least one of its inputs is a read-2 polynomial, fH = f1f2

when at least one of f1, f2 is a read-2 polynomial. Since G7 is a hitting-set generator

for a ROF as well as sum of two ROFs, G7 is a hitting-set generator for both f1 and f2.

Since f1 and f2 are variable disjoint by definition ofH ,G7 is also a hitting-set generator

for fH .

When H is of type 2 and at least one of its inputs is a read-2 polynomial, we assume

without loss of generality that one of the inputs of H is a type 3 gate and the other is

a gate of type 1 or 2 computing a read-once polynomial. We note that G7 is a hitting-

set generator for both the inputs of H . We need to inspect G7(fH) to show that it is

indeed a hitting-set generator for fH = fH1 + fH2 , where fH1 , fH2 are the polynomials

computed by the gates H1 and H2 respectively.

We generalise the statement and show that if GK is a hitting-set generator for a

class of polynomials C, and f1, f2 are non-constant polynomials in C such that var(f1)∩

var(f2) = ∅ and Gk(f1), Gk(f2) 6= 0, then Gk(f1 + f2) 6= 0.

We know by linearity of Gk (Lemma 19), Gk(f1 + f2) = Gk(f1) + Gk(f2). But

Gk(f1) andGk(f2) are defined on the same variables y1, . . . , yk, z1, . . . , zk, so the mono-

mials in Gk(f1) and Gk(f2) might cancel each other to yield a zero polynomial. Hence,

Gk might not preserve identity of the polynomial denoted by f1 + f2. We need to argue

107

that this is not the case.

Let f1 =
∑

m∈Mh
cmm, whereM1 is the set of monomials of f1 and ∀m ∈ M1,

cm is a constant from the field F. We know there is at least one m ∈ M1 for which

cm 6= 0 since Gk(f1) 6= 0 ⇐⇒ f1 6= 0. Let Xm denote the variables in the support of

the monomial m.

We consider f ′1, an affine shift of the polynomial f1 such that f ′1 ≡ h(x1+a1, . . . , xn+

an). The affine shift of the surviving monomial m, pm can now be described as follows.

pm =
∏

xj∈Xm

(xj + aj)

=
∏

xj∈Xm

xj +

 ∑
S⊆Xm, S={xi}

ai
∏

xj∈Xm\S

xj

+ . . .

+

 ∑
S⊆Xm, |S|=`

(∏
xi∈S

ai

)
·

 ∏
xj∈Xm\S

xj

+ . . .+ a1a2 . . . at.

By the definition of SV-generator, if we substitute yi = αj in Gk(f1), for all vari-

ables x`, ` 6= j,Gk(x`) = 0 whereasGk(xj) = zi. If a monomialm in f1 has a non-zero

coefficient cm, then an affine shift of the variables in X is bound to yield a linear term

`j = uxj + v in the expansion of pm, u, v being constants from F. Thus, in Gk(pm),

only this term survives since all other variables are mapped to zero.

When f1, f2 are variable disjoint, xj /∈ var(f2). Hence, substituting yi = αj in

Gk(f1 + f2), we will still get Gk(f1 + f2) |yi=αj= `j + c, which is non-constant. Thus,

Gk is a hitting-set generator for f1 + f2.

Proving the argument for the case where H has inputs H1, H2, H1 being a ROF and

H2 being a gate of type 3 implies a proof for the cases where H2 is a gate of type 1 or 2

computing a read-2 polynomial. This is because the first case proves G7 is a hitting-set

generator for the immediate ancestor of a gate of type 3 in F , and we can recursively

apply the above argument for all gates on the root to H path in F to obtain the final

result.

Since we have discussed the properties and some applications of the SV-generator,

we want to now understand for which models SV-generator cannot be used to obtain

108

efficient black-box PIT and what inherent property of the generator causes this limita-

tion.

6.5 SV-generator preserves rank

In this section, we show that images of a polynomial f under the SV-generator have

many partitions where the coefficient matrix has non-FPT rank provided f has one

such partition. More generally, we show that the rank of the coefficient matrix of a

polynomial acts as an invariant for the SV-generator.

Theorem 19. Let f ∈ F[x1, . . . , xn] be a polynomial of degree ≤ k. Let g = G2k(f).

Then,

∃ϕ, rank(Mfϕ) ≥ R =⇒ Prϕ′ [rank(Mgϕ′) = R] ≥ Ω(1/22k),

where the probability is taken over the uniform distribution over the set of all partitions

of the variables in g into two parts of equal size.

Proof Outline Suppose there is a partitionϕ of the variables in f such that rank(Mfϕ) ≥

R. In order to prove that rank is preserved under the map G2k, we show that any R lin-

early independent rows of theMfϕ remain linearly independent in the coefficient matrix

of the image polynomial g = G2k(f). However, this does not immediately give a par-

tition in the variables of g so that the coefficient matrix has high rank. We show that,

in fact for at least 1/22k fractions of the partitions of variables of g, the coefficient ma-

trix of g has large rank. Figure 6.1 is an illustration of the main idea of this proof that

independent rows in the coefficient matrix of the input polynomial f transform into a

band of rows in the coefficient matrix for Ĝ2k(f) under most of the partitions of the

variables, where Ĝ2k is a slight modification on the SV-generator G2k.

Proof. Fix a1, . . . , an ∈ F be distinct elements. Recall that the generator G2k with

respect to a1, . . . , an is defined as (G1
2k, . . . , G

n
2k), i.e., G2k(xi) = Gi

2k ∀i ∈ {1, . . . , n}.

109

Consider :

G2k(xi) =
2k∑
p=1

zpLi(yp)

=
2k∑
p=1

zp

∏
j 6=i(yp − aj)∏
j 6=i(ai − aj)

=
2k∑
p=1

zp
(yp − a1) . . . (yp − ai−1)(yp − ai+1) . . . (yp − an)

(ai − a1) . . . (ai − ai−1)(ai − ai+1) . . . (ai − an)

=
2k∑
p=1

n∑
q=1

bpzpy
n−q
p (−1)qSYMn−1,q−1 (by expanding the product, bp is a constant)

=
∑
p∈[2k]
q∈[n]

zpy
n−q
p cpqi (where cpqi = bp(−1)qSYMn−1,q−1(a1, . . . , ai−1, ai+1, . . . , an)).

Multiplying out any of the k terms obtained above, we get

G2k(xi1xi2 . . . xik) =
∑

p1,...,pk∈[2k]
q1...qk∈[n−1]

zp1 . . . zpky
n−q1
p1

. . . yn−qkpk

k∏
j=1

cpjqjij

LetMk be the set of all degree k monomials in the variables {x1, . . . , xn}, and Snk
be the set of all monomials of the form

∏
i∈I ziy

n−qi
i , for all multi-sets I ⊆ {1, . . . , 2k}

of size k and q = (q1, . . . , qk) with 1 ≤ qi ≤ n − 1. Let V = Span(Mk), and

W = Span(Snk) be the vector spaces spanned respectively by the sets Mk and Snk.

The vector space V contains all polynomials in F of degree k, and hence the dimension

of V is
(
n+k
k

)
. Also, dimension of W is bounded by

(
4k
k

)
nk. Note that G2k is a linear

map from V to W . Let C be the
(
n+k
k

)
×
(

4k
k

)
nk matrix representing G2k as a linear

map from V to W . Then, ∀v ∈ V, G2k(v) = CTv ∈ W . Now, we argue that C has full

row-rank.

Claim 2. C has full row-rank.

Proof of claim 2. Suppose C is not of full row rank. Then ∃ αi1 , . . . , αir ∈ R, such that∑r
j=1 αijC[ij] = 0 with αij 6= 0 for some j, where C[i] represents the ith row of C,

and r ≤ dim(V). Hence, as G2k is linear, we deduce that ∃vi1 , . . . , vir ∈ V such that

110

MB

MA

p1

p2

pr

·
·

Ĝ2k

Ĝ2k(p1)

Ĝ2k(p2)

·
·
Ĝ2k(pr)

MY2∪Z2

MY1∪Z1

Mfϕ, ϕ : X → A ∪B
Mgϕ′ , g = Ĝ2k(f),
ϕ′ : Y ∪ Z → (Y1 ∪ Z1) ∪ (Y2 ∪ Z2)

Figure 6.1: Visualisation of the main proof idea for Theorem 19.

G2k(vij) = C[ij]. Then we have:

r∑
j=1

αijG2k(vij) = 0 =⇒
r∑
j=1

G2k(αijvij) = 0 =⇒ G2k(αi1vi1 + . . .+ αirvir) = 0

We can see that P ≡ α1vi1 + . . . + αirvir is a polynomial of degree at most k in

F[x1, . . . , xn], such that G2k(P) ≡ 0, whereas P 6≡ 0 since ∃αij 6= 0. This contradicts

Proposition 6. Hence, the claim is proved.

Consider a partition ϕ : X → A∪B and suppose rank(Mfϕ) ≥ R. Let m1, . . . ,mR

be R linearly independent rows of Mf (chosen arbitrarily). Let p1, . . . , pR be the poly-

nomials representing these rows, i.e., pi =
∑

S⊆BMf [mi,mS]mS. Then p1, . . . , pR

are linearly independent, i.e., ∀α1 . . . αR ∈ F,
∑R

i=1 αipi = 0 =⇒ ∀i, αi = 0. Let

qi = G2k(pi), 1 ≤ i ≤ R then clearly,
∑R

i=1 αiqi = 0 =⇒ ∀i, αi = 0.

Suppose G2k : F[x1, . . . , xn] → F[Y ∪ Z] where Y = {y1, . . . , y2k} and Z =

{z1, . . . , z2k}. Consider the arbitrary partition: Y = Y1 ∪ Y2, |Y1| = |Y2| = k. Let

Z = Z1 ∪ Z2, |Z1| = |Z2| = k, where Z1 = {zi | yi ∈ Y1} and Z2 = Z \ Z1. Define

the map Ĝ2k = (Ĝ
(1)
2k , . . . , Ĝ

(n)
2k), where

Ĝ
(i)
2k = Ĝ2k(xi) =

G
(i)
2k |{w=0|w∈Y2∪Z2} if i ∈ A

G
(i)
2k |{w=0|w∈Y1∪Z1} if i ∈ B

Note that the polynomial G(i)
2k |{x=0|x∈Y2∪Z2} is indeed a copy of Gi

k for every i, and

111

the same holds for G(i)
2k |{x=0|x∈Y2}. Hence, Ĝ2k is defined over Y1 ∪ Z1 for i ∈ A, and

over Y2 ∪ Z2 for i ∈ B. Now, the partition ϕ naturally induces a partition ϕ′ of Y ∪ Z.

Let q′i = Ĝ2k(pi), m′i = Ĝ2k(mi). Note that m′1, . . . ,m
′
R are linearly indepen-

dent. This follows from the fact that if
∑

i∈[R] αim
′
i = 0 and ∃i ∈ [R], αi 6= 0, then∑

i∈[R] αiĜ2k(mi) = Ĝ2k(
∑

i∈[R] αimi) = 0, since Ĝ2k is a linear map. But we know,∑
i∈[R] αimi 6= 0 as m1, . . . ,mR are distinct monomials. As Ĝ2k is a hitting-set gener-

ator, Ĝ2k(
∑

i∈[R] αimi) 6= 0.

From the above observations, we have that the polynomials q′1, . . . , q
′
R are linearly

independent. Since each of the q′is correspond to multiple rows (indexed by all possible

monomials Y1∪Z1 occurring in q′i) in the matrix Mgϕ′ , we have rank(Mgϕ′) ≥ R. Now,

to prove the required probability bound, note that the choice of the partition Y ′ = Y1∪Y2

was arbitrary, and the choice of the partition Z ′ = Z1 ∪ Z2 follows from that, since

∀yj ∈ Y1, zj ∈ Z1. Hence, the rank bound holds for all the
(

2k
k

)
such partitions of Y .

Thus Pr[rank(Mgϕ′) ≥ R] ≥
(

2k
k

)
/
(

4k
2k

)
= Ω(1/22k).

It may be noted that the for R = nΩ(k) there are degree k polynomials computed by

ΠΣΠ circuits where there is a partition ϕ such that Theorem 19 is applicable. Here is

an example:

Example The polynomial p =
∏ k

2
i=0

(
x in

2k
+1x in

2k
+2 + . . .+ x (i+1)n

2k
−1
x (i+1)n

2k

)
has rank

nk/2/2kk/2 under the partition ϕ such that ∀ odd i ∈ [n], ϕ(xi) ∈ Y , else ϕ(xi) ∈ Z.

It is not clear if Theorem 19 can be generalized to arbitrary hitting set generators

for polynomials parameterized by the degree. The main challenge here is to obtain a

partition under which the image of the generator has rank R. The crucial property of

the SV-generator that is used to obtain a partition is the fact that substituting a suitable

subset of variables to zero results in a a copy of the generator with a fewer number of

variables. In fact, it may noted that any family of generators whose suitably chosen

projections give a generator from the same family. We call such generators SV-like

generators.

Let H = (Hn,t)1≤t≤n be a family of generators, where Hn,t : F[x1, . . . , xn] →

F[y1, . . . , yt]. We say that Hn,t is a SV like generator, if for 1 ≤ t ≤ n, Hn,t(xi)

there exists a subset S ⊆ {y1, . . . , yt}, |S| = t/2 such that, H(n,t) |{y=0|y∈S} and

112

H(n,t) |{y=0|y/∈S} are both copies of H(n,t/2).

Corollary 6. Let H = (Hn,2t)1≤2t≤n be an SV like hitting set generator such that Hn,2t

is a hitting set generator for degree t polynomials on n variables. Let f = f(x1, . . . , xn)

be any polynomial of degree t/2 and h = H(f). Then,

∃ϕ, rank(Mfϕ) ≥ R =⇒ ∃ϕ′rank(Mhϕ′) ≥ R.

Proof. The argument is essentially the same as in Theorem 19. Let k = t/2, and let

Mk be the set of all degree k monomials in the variables {x1, . . . , xn}, and Sn,k be

the set of all monomials that appear in at least one of the polynomials in the image set

of Mk under the map Hn,2t. Note that Sn,k is a finite set. Let V = Span(Mk), and

W = Span(Sn,k) be the vector spaces spanned by the sets of monomials. The vector

space V contains all polynomials in F of degree k. As in Claim 1, it can be concluded

that H is a linear map from V to W that has full row-rank.

Consider a partition ϕ : X → A∪B such that rank(Mfϕ) ≥ R. Let m1, . . . ,mR be

row indices of R linearly independent rows of Mf (chosen arbitrarily). Let p1, . . . , pR

be the polynomials represented by these rows, i.e., pi =
∑

S⊆BMf [mi,mS]mS. Then

the polynomials p1, . . . , pR are linearly independent, i.e., ∀α1 . . . αR ∈ F,
∑R

i=1 αipi =

0 =⇒ ∀i, αi = 0. Let qi = G2k(pi), 1 ≤ i ≤ R then clearly,
∑R

i=1 αiqi = 0 =⇒

∀i, αi = 0. Consider the partition of Y = {y1, . . . , y2t} to Y1 ∪ Y2, where Y1 = S, Y2 =

{y1, . . . , y2t} \ S. We have |Y1| = |Y2| = t. Define the map Ĥ(n,2t) = (Ĥ(1), . . . , Ĥ(n)),

where

Ĥ(i) = Ĥ(xi) =

H
(i)
(n,2t)|{w=0|w∈Y2} if i ∈ A

H
(i)
(n,2t)|{w=0|w∈Y1} if i ∈ B

Note that the polynomialH(i)
(n,2t)|{x=0|x∈Y2} is indeed a copy ofH i

(n,t) for every i, and

the same holds for H(i)
(n,2t)|{x=0|x∈Y1}. Hence, Ĥ(n,2t) is defined over Y1 for i ∈ A, and

over Y2 for i ∈ B. Thus, the partition ϕ naturally induces a partition ϕ′ of Y .

Let q′i = Ĥ(n,2t)(pi), m′i = Ĥ(n,2t)(mi). Now we argue that m′1, . . . ,m
′
R are lin-

early independent, since m1, . . . ,mR are linearly independent. Suppose not, and let

α1, . . . , αR ∈ F be such that
∑R

i=1 αim
′
i = 0. Since Ĥn,2t is a linear map from V to

113

W , we have Ĥ(n,2t)(
∑R

i=1 αimi) =
∑R

i=1 αiĤ(n,2t)(mi) =
∑R

i=1 αim
′
i = 0, a contra-

diction to the fact that Ĥ(n,2t) is a copy of Hn,t and is a hitting set generator for degree

k polynomials.

From the above observations, we have that the polynomials q′1, . . . , q
′
R are linearly

independent. Since each of the q′is correspond to multiple rows in the matrix Mhϕ′ , we

have rank(Mhϕ′) ≥ R.

6.6 Conclusion

We have showed that the SV-generator, with suitable parameters, preserves the rank of

partial derivative matrix of a n-variate polynomial with suitable partition of the vari-

ables. The main hurdle in generalizing our technique to arbitrary hitting set generators

for degree k polynomials is the lack of structure of the generators under substitution

of variables. It would be interesting to see if general hitting sets preserve the rank of

partial derivative matrix, or rather, any complexity measure.

Finally, it will be interesting to see if hitting set generators can reduce the complex-

ity of a polynomial. More precisely, suppose C1 and C2 are algebraic complexity classes

such that the class C1 is subsumed by the class C2. Let G be a family of hitting set gen-

erators for C1. We ask if it is possible that G(f) ∈ C2 for every polynomial f computed

by a circuit C ∈ C1.

114

CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

Syntactically multilinear formulas are a widely studied sub-class of the multilinear cir-

cuits. There has been several results obtaining lower bounds on restricted classes of syn-

tactic multilinear formulas computing hard multilinear polynomials, including classes

where the number of reads of the input variable is bounded. By varying the number and

order of reads allowed in a syntactically multilinear formula or an ABP, it is possible

to define novel, interesting models . Obtaining lower bounds and separations between

such classes illustrate the power of reads in a circuit. Our results in this thesis further

explore this direction of research. In one such result we observe that reading the input

variables in intervals in ABPs grant the same power as reading the variables only once,

in a fixed order. In order to examine the relationships between classes of bounded-read

syntactically multilinear formulas, we construct or use previously defined multilinear

polynomials that exhibit the maximum value of the complexity measure of rank of the

partial derivative matrix. We proceed to obtain lower bounds against some bounded-

read multilinear classes computing such an explicit multilinear polynomial, thus em-

phasising that the rank measure and the explicit multilinear polynomials continue to be

useful in yielding super-polynomial or larger lower bounds on bounded-read multilinear

classes.

It is interesting to generalize the problem of obtaining lower bounds further, to mod-

els where the degree is represented as a parameter, since it elucidates the power of

degree in algebraic computation. In the results in this thesis, we observe that parame-

terization makes it harder to solve the lower bound problem. Considering the rank of the

partial derivative matrix as our complexity measure, we see that the notion of full rank

in the bounded-degree setting is easily attained by restricted multilinear parameterized

models.

In a different result, we observe that in the parameterized setting, depth four circuits

do not wield the same power as unbounded depth circuits as in the classical setting. But

the classes of parameterized multilinear circuits of depth four, sum of three ROFs and

read-2 oblivious ABPs compute multilinear polynomials of degree k that attain full rank

of the partial derivative matrix. Thus it is difficult to obtain separations between param-

eterized models of computation of larger depth or higher number of reads, respectively,

using this complexity measure.

However, since the parameterized paradigm offers a relaxed notion of tractability,

it is interesting to inspect if better algorithms for PIT can be obtained on polynomials

parameterized by the degree, k. We explore the possibility of obtaining parameterized

PIT by using the hitting-set generator defined by Shpilka and Volkovich (2008). The

SV-generator is useful in the parameterized setting since it reduces a n-variate polyno-

mial of degree k to a 2k-variate polynomial of degree nk. Therefore, the SV-generator

can be used to obtain white-box PIT for depth three parameterized circuits, since the

resulting O(k)-variate polynomial takes a simple form for which efficient white-box

PIT is known. But the complexity of a depth three circuit, represented by the rank of

the partial derivative matrix for any polynomial of degree k computed by a circuit of

depth three, is seen to be much lower than that of polynomials computed by circuits

of higher depth. For polynomials computed by circuits of depth larger than three, we

show that the O(k)-variate polynomial yielded by SV-generator has similar value of

the rank measure as the original polynomial on which the SV-generator is applied, and

does not take a simple form as in the case of depth three parameterized polynomials.

We are able to generalize this property to all hitting set generators that are similar to the

SV-generator. Thus, in order to obtain parameterized PIT , classes of hitting set gener-

ators that resemble the SV-generator will not be useful and more novel approaches are

necessary.

Prospective Directions from this Thesis

The most immediately following question from our lower bound results would be to ex-

tend the used techniques for obtaining lower bounds against other bounded-read classes

like read-k formulas, interval ABPs and interval formulas. Such lower bounds and con-

structions of explicit multilinear polynomials for the purpose of obtaining these lower

bounds may also yield separations between bounded-read multilinear classes. For ex-

ample, a separation between the classes of syntactically multilinear formulas and sum

of read-k formulas (for a constant k) will establish the power of the number of reads

116

in a formula. Similar results can be obtained regarding the power of reading variables

in differing orders through obtaining separation between classes of oblivious ABPs and

k-pass ABPs.

Regarding parameterized lower bounds, since measures related to the dimension

of the space spanned by partial derivatives of a polynomial are by definition close to

the measure of rank of partial derivative matrix of a polynomial, it is unlikely that

better lower bounds can be obtained using measures like the dimension of shifted partial

derivatives. But there is a possibility that other parameterizations of polynomials, or

the use of a complexity measure unrelated to the dimension of partial derivatives may

yield improved lower bounds and separations between parameterized circuit classes. A

parameterized depth reduction of circuits to constant depth might provide more insight

on which classes of parameterized polynomials might be more amenable for obtaining

lower bounds.

From our result on the rank-preserving property of SV and SV-like generators, it can

be concluded that subsequent work on parameterized PIT can make use of other classes

of hitting set generators as discussed in this thesis. Such generators might reduce the

input polynomial to a different low rank model than a small sum of product of univariate

polynomials. One such low rank model can be constant-depth ROABPs, for which

black-box PIT is known. Black-box PIT can also be obtained by using generators that

reduce the input polynomial to a polynomial on a constant number of variables.

117

REFERENCES

1. Agrawal, M., R. Gurjar, A. Korwar, and N. Saxena (2015). Hitting-sets for ROABP
and sum of set-multilinear circuits. SIAM J. Comput., 44(3), 669–697. URL https:
//doi.org/10.1137/140975103.

2. Agrawal, M. and V. Vinay, Arithmetic circuits: A chasm at depth four. In 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28,
2008, Philadelphia, PA, USA. IEEE Computer Society, 2008. URL https://doi.
org/10.1109/FOCS.2008.32.

3. Amini, O., F. V. Fomin, and S. Saurabh (2012). Counting subgraphs via homomor-
phisms. SIAM J. Discrete Math., 26(2), 695–717. URL https://doi.org/10.
1137/100789403.

4. Anderson, M., D. van Melkebeek, and I. Volkovich (2015). Deterministic polynomial
identity tests for multilinear bounded-read formulae. Comput. Complex., 24(4), 695–
776. URL https://doi.org/10.1007/s00037-015-0097-4.

5. Arvind, V. and S. Raja (2016). Some lower bound results for set-multilinear arithmetic
computations. Chicago J. Theor. Comput. Sci., 2016. URL http://cjtcs.cs.
uchicago.edu/articles/2016/6/contents.html.

6. Baur, W. and V. Strassen (1983). The complexity of partial derivatives. Theor. Com-
put. Sci., 22, 317–330. URL https://doi.org/10.1016/0304-3975(83)
90110-X.

7. Biedl, T. C., E. D. Demaine, C. A. Duncan, R. Fleischer, and S. G. Kobourov (2004).
Tight bounds on maximal and maximum matchings. Discret. Math., 285(1-3), 7–15.
URL https://doi.org/10.1016/j.disc.2004.05.003.

8. Bläser, M. and C. Engels, Parameterized valiant’s classes. In B. M. P. Jansen and J. A.
Telle (eds.), 14th International Symposium on Parameterized and Exact Computation,
IPEC 2019, September 11-13, 2019, Munich, Germany, volume 148 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL https://doi.org/10.
4230/LIPIcs.IPEC.2019.3.

9. Bläser, M., M. Hardt, R. J. Lipton, and N. K. Vishnoi (2009). Deterministically
testing sparse polynomial identities of unbounded degree. Inf. Process. Lett., 109(3),
187–192. URL https://doi.org/10.1016/j.ipl.2008.09.029.

10. Brent, R. P. (1974). The parallel evaluation of general arithmetic expressions. J. ACM,
21(2), 201–206. URL https://doi.org/10.1145/321812.321815.

11. Chauhan, A. and B. V. R. Rao, Parameterized analogues of probabilistic computation.
In S. Ganguly and R. Krishnamurti (eds.), Algorithms and Discrete Applied Mathe-
matics - First International Conference, CALDAM 2015, Kanpur, India, February 8-10,
2015. Proceedings, volume 8959 of Lecture Notes in Computer Science. Springer, 2015.
URL https://doi.org/10.1007/978-3-319-14974-5_18.

118

https://doi.org/10.1137/140975103
https://doi.org/10.1137/140975103
https://doi.org/10.1109/FOCS.2008.32
https://doi.org/10.1109/FOCS.2008.32
https://doi.org/10.1137/100789403
https://doi.org/10.1137/100789403
https://doi.org/10.1007/s00037-015-0097-4
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1016/j.disc.2004.05.003
https://doi.org/10.4230/LIPIcs.IPEC.2019.3
https://doi.org/10.4230/LIPIcs.IPEC.2019.3
https://doi.org/10.1016/j.ipl.2008.09.029
https://doi.org/10.1145/321812.321815
https://doi.org/10.1007/978-3-319-14974-5_18

12. Chung, F. R., Separator theorems and their applications. Forschungsinst. für Diskrete
Mathematik, 1989. URL http://www.math.ucsd.edu/~fan/mypaps/
fanpap/117separatorthms.pdf.

13. DeMillo, R. A. and R. J. Lipton (1978). A probabilistic remark on algebraic program
testing. Inf. Process. Lett., 7(4), 193–195. URL https://doi.org/10.1016/
0020-0190(78)90067-4.

14. Downey, R. G. and M. R. Fellows, Parameterized Complexity. Monographs in Com-
puter Science. Springer, 1999. ISBN 978-1-4612-6798-0. URL https://doi.org/
10.1007/978-1-4612-0515-9.

15. Dvir, Z., G. Malod, S. Perifel, and A. Yehudayoff, Separating multilinear branching
programs and formulas. In H. J. Karloff and T. Pitassi (eds.), Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA,
May 19 - 22, 2012. ACM, 2012. URL https://doi.org/10.1145/2213977.
2214034.

16. Dvir, Z. and A. Shpilka (2007). Locally decodable codes with two queries and poly-
nomial identity testing for depth 3 circuits. SIAM J. Comput., 36(5), 1404–1434. URL
https://doi.org/10.1137/05063605X.

17. Engels, C. (2016). Why are certain polynomials hard?: A look at non-commutative, pa-
rameterized and homomorphism polynomials. Ph.D. thesis, Saarland University. URL
https://nbn-resolving.org/urn:nbn:de:bsz:291-scidok-64387.

18. Fischer, I. (1994). Sums of like powers of multivariate linear forms. Mathemat-
ics Magazine, 67(1), 59–61. URL https://doi.org/10.1080/0025570X.
1994.11996185.

19. Flum, J. and M. Grohe, Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 2006. ISBN 978-3-540-29952-3. URL
https://doi.org/10.1007/3-540-29953-X.

20. Fomin, F. V., D. Lokshtanov, V. Raman, S. Saurabh, and B. V. R. Rao (2012). Faster
algorithms for finding and counting subgraphs. J. Comput. Syst. Sci., 78(3), 698–706.
URL http://dx.doi.org/10.1016/j.jcss.2011.10.001.

21. Fournier, H., N. Limaye, G. Malod, and S. Srinivasan, Lower bounds for depth 4
formulas computing iterated matrix multiplication. In D. B. Shmoys (ed.), Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014.
ACM, 2014. URL https://doi.org/10.1145/2591796.2591824.

22. Ghosal, P., O. Prakash, and B. V. R. Rao, On constant depth circuits parame-
terized by degree: Identity testing and depth reduction. In Y. Cao and J. Chen
(eds.), Computing and Combinatorics - 23rd International Conference, COCOON
2017, Hong Kong, China, August 3-5, 2017, Proceedings, volume 10392 of Lecture
Notes in Computer Science. Springer, 2017. URL https://doi.org/10.1007/
978-3-319-62389-4_21.

23. Grigoriev, D. and M. Karpinski, An exponential lower bound for depth 3 arithmetic
circuits. In J. S. Vitter (ed.), Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998. ACM, 1998. URL
https://doi.org/10.1145/276698.276872.

119

http://www.math.ucsd.edu/~fan/mypaps/fanpap/117separatorthms.pdf
http://www.math.ucsd.edu/~fan/mypaps/fanpap/117separatorthms.pdf
https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1145/2213977.2214034
https://doi.org/10.1145/2213977.2214034
https://doi.org/10.1137/05063605X
https://nbn-resolving.org/urn:nbn:de:bsz:291-scidok-64387
https://doi.org/10.1080/0025570X.1994.11996185
https://doi.org/10.1080/0025570X.1994.11996185
https://doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1016/j.jcss.2011.10.001
https://doi.org/10.1145/2591796.2591824
https://doi.org/10.1007/978-3-319-62389-4_21
https://doi.org/10.1007/978-3-319-62389-4_21
https://doi.org/10.1145/276698.276872

24. Grigoriev, D. and A. A. Razborov (2000). Exponential lower bounds for depth
3 arithmetic circuits in algebras of functions over finite fields. Appl. Algebra
Eng. Commun. Comput., 10(6), 465–487. URL https://doi.org/10.1007/
s002009900021.

25. Gupta, A., P. Kamath, N. Kayal, and R. Saptharishi (2014). Approaching the chasm
at depth four. J. ACM, 61(6), 33:1–33:16. URL https://doi.org/10.1145/
2629541.

26. Gurjar, R., A. Korwar, and N. Saxena (2017a). Identity testing for constant-width,
and any-order, read-once oblivious arithmetic branching programs. Theory of Comput-
ing, 13(1), 1–21. URL https://doi.org/10.4086/toc.2017.v013a002.

27. Gurjar, R., A. Korwar, N. Saxena, and T. Thierauf (2017b). Determin-
istic identity testing for sum of read-once oblivious arithmetic branching pro-
grams. Comput. Complex., 26(4), 835–880. URL https://doi.org/10.1007/
s00037-016-0141-z.

28. Hoory, S., N. Linial, and A. Wigderson (2006). Expander graphs and their ap-
plications. Bulletin of the American Mathematical Society, 43(4), 439–561. URL
https://doi.org/10.1090/S0273-0979-06-01126-8.

29. Jansen, M. J., Lower bounds for syntactically multilinear algebraic branching pro-
grams. In E. Ochmanski and J. Tyszkiewicz (eds.), Mathematical Foundations of
Computer Science 2008, 33rd International Symposium, MFCS 2008, Torun, Poland,
August 25-29, 2008, Proceedings, volume 5162 of Lecture Notes in Computer Science.
Springer, 2008. URL https://doi.org/10.1007/978-3-540-85238-4_
33.

30. Jansen, M. J., Y. Qiao, and J. Sarma, Deterministic black-box identity testing pi-
ordered algebraic branching programs. In IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2010, December 15-
18, 2010, Chennai, India. 2010. URL https://doi.org/10.4230/LIPIcs.
FSTTCS.2010.296.

31. Jerrum, M. and M. Snir (1982). Some exact complexity results for straight-line com-
putations over semirings. J. ACM, 29(3), 874–897. URL https://doi.org/10.
1145/322326.322341.

32. Kabanets, V. and R. Impagliazzo (2004). Derandomizing polynomial identity tests
means proving circuit lower bounds. Comput. Complex., 13(1-2), 1–46. URL https:
//doi.org/10.1007/s00037-004-0182-6.

33. Kayal, N., V. Nair, and C. Saha, Separation between read-once oblivious algebraic
branching programs (roabps) and multilinear depth three circuits. In N. Ollinger
and H. Vollmer (eds.), 33rd Symposium on Theoretical Aspects of Computer Science,
STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL https://doi.org/10.
4230/LIPIcs.STACS.2016.46.

34. Kayal, N., C. Saha, and R. Saptharishi, A super-polynomial lower bound for regular
arithmetic formulas. In D. B. Shmoys (ed.), Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014. ACM, 2014. URL https:
//doi.org/10.1145/2591796.2591847.

120

https://doi.org/10.1007/s002009900021
https://doi.org/10.1007/s002009900021
https://doi.org/10.1145/2629541
https://doi.org/10.1145/2629541
https://doi.org/10.4086/toc.2017.v013a002
https://doi.org/10.1007/s00037-016-0141-z
https://doi.org/10.1007/s00037-016-0141-z
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1007/978-3-540-85238-4_33
https://doi.org/10.1007/978-3-540-85238-4_33
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.296
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.296
https://doi.org/10.1145/322326.322341
https://doi.org/10.1145/322326.322341
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.4230/LIPIcs.STACS.2016.46
https://doi.org/10.4230/LIPIcs.STACS.2016.46
https://doi.org/10.1145/2591796.2591847
https://doi.org/10.1145/2591796.2591847

35. Kayal, N. and S. Saraf, Blackbox polynomial identity testing for depth 3 circuits.
In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009,
October 25-27, 2009, Atlanta, Georgia, USA. IEEE Computer Society, 2009. URL
https://doi.org/10.1109/FOCS.2009.67.

36. Kayal, N. and N. Saxena (2007). Polynomial identity testing for depth 3 cir-
cuits. Comput. Complex., 16(2), 115–138. URL https://doi.org/10.1007/
s00037-007-0226-9.

37. Klivans, A. R. and D. A. Spielman, Randomness efficient identity testing of multivari-
ate polynomials. In J. S. Vitter, P. G. Spirakis, and M. Yannakakis (eds.), Proceed-
ings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Herak-
lion, Crete, Greece. ACM, 2001. URL https://doi.org/10.1145/380752.
380801.

38. Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of com-
putation, 48(177), 203–209. URL https://doi.org/10.1090/
S0025-5718-1987-0866109-5.

39. Koiran, P. (2012). Arithmetic circuits: The chasm at depth four gets wider. Theor.
Comput. Sci., 448, 56–65. URL https://doi.org/10.1016/j.tcs.2012.
03.041.

40. Koutis, I., Faster algebraic algorithms for path and packing problems. In
L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and
I. Walukiewicz (eds.), Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part
I: Tack A: Algorithms, Automata, Complexity, and Games, volume 5125 of Lecture
Notes in Computer Science. Springer, 2008. URL https://doi.org/10.1007/
978-3-540-70575-8_47.

41. Koutis, I. and R. Williams, Limits and applications of group algebras for parame-
terized problems. In S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. E. Niko-
letseas, and W. Thomas (eds.), Automata, Languages and Programming, 36th Inter-
national Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings,
Part I, volume 5555 of Lecture Notes in Computer Science. Springer, 2009. URL
https://doi.org/10.1007/978-3-642-02927-1_54.

42. Kumar, M. and S. Saraf, Superpolynomial lower bounds for general homogeneous
depth 4 arithmetic circuits. In J. Esparza, P. Fraigniaud, T. Husfeldt, and E. Kout-
soupias (eds.), Automata, Languages, and Programming - 41st International Collo-
quium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I,
volume 8572 of Lecture Notes in Computer Science. Springer, 2014. URL https:
//doi.org/10.1007/978-3-662-43948-7_62.

43. Kumar, M. and S. Saraf (2015). The limits of depth reduction for arithmetic formulas:
It’s all about the top fan-in. SIAM J. Comput., 44(6), 1601–1625. URL https:
//doi.org/10.1137/140999220.

44. Mahajan, M. and V. Vinay (1997). Determinant: Combinatorics, algorithms, and
complexity. Chicago J. Theor. Comput. Sci., 1997. URL http://cjtcs.cs.
uchicago.edu/articles/1997/5/contents.html.

121

https://doi.org/10.1109/FOCS.2009.67
https://doi.org/10.1007/s00037-007-0226-9
https://doi.org/10.1007/s00037-007-0226-9
https://doi.org/10.1145/380752.380801
https://doi.org/10.1145/380752.380801
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1016/j.tcs.2012.03.041
https://doi.org/10.1016/j.tcs.2012.03.041
https://doi.org/10.1007/978-3-540-70575-8_47
https://doi.org/10.1007/978-3-540-70575-8_47
https://doi.org/10.1007/978-3-642-02927-1_54
https://doi.org/10.1007/978-3-662-43948-7_62
https://doi.org/10.1007/978-3-662-43948-7_62
https://doi.org/10.1137/140999220
https://doi.org/10.1137/140999220
http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html
http://cjtcs.cs.uchicago.edu/articles/1997/5/contents.html

45. Miller, V. S., Use of elliptic curves in cryptography. In H. C. Williams (ed.), Advances
in Cryptology — CRYPTO ’85 Proceedings. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1986. ISBN 978-3-540-39799-1. URL https://doi.org/10.1007/
3-540-39799-X_31.

46. Minahan, D. and I. Volkovich (2018). Complete derandomization of identity testing
and reconstruction of read-once formulas. TOCT , 10(3), 10:1–10:11. URL https:
//doi.org/10.1145/3196836.

47. Mitzenmacher, M. and E. Upfal, Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005. ISBN 978-0-521-
83540-4. URL https://doi.org/10.1017/CBO9780511813603.

48. Müller, M. (2008). Parameterized Randomization. Ph.D. thesis, Albert-Ludwigs-
Universität Freiburg im Breisgau. URL https://d-nb.info/993356915/34.

49. Nisan, N., Lower bounds for non-commutative computation (extended abstract). In
C. Koutsougeras and J. S. Vitter (eds.), Proceedings of the 23rd Annual ACM Sympo-
sium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA. ACM,
1991. URL https://doi.org/10.1145/103418.103462.

50. Nisan, N. and A. Wigderson (1997). Lower bounds on arithmetic circuits via par-
tial derivatives. Comput. Complex., 6(3), 217–234. URL https://doi.org/10.
1007/BF01294256.

51. Ore, Ø. (1922). über höhere kongruenzen. Norsk Mat. Forenings Skrifter, 1(7), 15.

52. Ramya, C. and B. V. R. Rao, Lower bounds for special cases of syntactic multi-
linear abps. In L. Wang and D. Zhu (eds.), Computing and Combinatorics - 24th
International Conference, COCOON 2018, Qing Dao, China, July 2-4, 2018, Pro-
ceedings, volume 10976 of Lecture Notes in Computer Science. Springer, 2018. URL
https://doi.org/10.1007/978-3-319-94776-1_58.

53. Ramya, C. and B. V. R. Rao, Lower bounds for multilinear order-restricted abps. In
P. Rossmanith, P. Heggernes, and J. Katoen (eds.), 44th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30, 2019,
Aachen, Germany, volume 138 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2019a. URL https://doi.org/10.4230/LIPIcs.MFCS.2019.
52.

54. Ramya, C. and B. V. R. Rao (2019b). Lower bounds for sum and sum of products
of read-once formulas. TOCT , 11(2), 10:1–10:27. URL https://doi.org/10.
1145/3313232.

55. Raz, R. (2006). Separation of multilinear circuit and formula size. Theory of
Computing, 2(6), 121–135. URL https://doi.org/10.4086/toc.2006.
v002a006.

56. Raz, R. (2009). Multi-linear formulas for permanent and determinant are of super-
polynomial size. J. ACM, 56(2), 8:1–8:17. URL https://doi.org/10.1145/
1502793.1502797.

122

https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1145/3196836
https://doi.org/10.1145/3196836
https://doi.org/10.1017/CBO9780511813603
https://d-nb.info/993356915/34
https://doi.org/10.1145/103418.103462
https://doi.org/10.1007/BF01294256
https://doi.org/10.1007/BF01294256
https://doi.org/10.1007/978-3-319-94776-1_58
https://doi.org/10.4230/LIPIcs.MFCS.2019.52
https://doi.org/10.4230/LIPIcs.MFCS.2019.52
https://doi.org/10.1145/3313232
https://doi.org/10.1145/3313232
https://doi.org/10.4086/toc.2006.v002a006
https://doi.org/10.4086/toc.2006.v002a006
https://doi.org/10.1145/1502793.1502797
https://doi.org/10.1145/1502793.1502797

57. Raz, R. and A. Shpilka (2005). Deterministic polynomial identity testing in non-
commutative models. Comput. Complex., 14(1), 1–19. URL https://doi.org/
10.1007/s00037-005-0188-8.

58. Raz, R. and A. Yehudayoff (2008). Balancing syntactically multilinear arithmetic cir-
cuits. Comput. Complex., 17(4), 515–535. URL https://doi.org/10.1007/
s00037-008-0254-0.

59. Reed, I. S. and G. Solomon (1960). Polynomial codes over certain finite fields. Journal
of the Society for Industrial and Applied Mathematics, 8(2), 300–304. URL https:
//doi.org/10.1137/0108018.

60. Saptharishi, R., S. Chillara, and M. Kumar (2016). A survey of lower bounds in
arithmetic circuit complexity. Technical report. URL https://github.com/
dasarpmar/lowerbounds-survey/releases.

61. Saxena, N., Diagonal circuit identity testing and lower bounds. In L. Aceto,
I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and
I. Walukiewicz (eds.), Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part
I: Tack A: Algorithms, Automata, Complexity, and Games, volume 5125 of Lecture
Notes in Computer Science. Springer, 2008. URL https://doi.org/10.1007/
978-3-540-70575-8_6.

62. Saxena, N. and C. Seshadhri, From sylvester-gallai configurations to rank bounds:
Improved black-box identity test for depth-3 circuits. In 51th Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Ve-
gas, Nevada, USA. IEEE Computer Society, 2010. URL https://doi.org/10.
1109/FOCS.2010.9.

63. Schwartz, J. T. (1980). Fast probabilistic algorithms for verification of polyno-
mial identities. J. ACM, 27(4), 701–717. URL https://doi.org/10.1145/
322217.322225.

64. Shpilka, A. and I. Volkovich, Read-once polynomial identity testing. In C. Dwork
(ed.), Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008. ACM, 2008. URL https:
//doi.org/10.1145/1374376.1374448.

65. Shpilka, A. and I. Volkovich, Improved polynomial identity testing for read-once for-
mulas. In I. Dinur, K. Jansen, J. Naor, and J. D. P. Rolim (eds.), Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, 12th In-
ternational Workshop, APPROX 2009, and 13th International Workshop, RANDOM
2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings, volume 5687 of Lecture
Notes in Computer Science. Springer, 2009. URL https://doi.org/10.1007/
978-3-642-03685-9_52.

66. Shpilka, A. and I. Volkovich (2015). Read-once polynomial identity test-
ing. Comput. Complex., 24(3), 477–532. URL https://doi.org/10.1007/
s00037-015-0105-8.

67. Shpilka, A. and A. Yehudayoff (2010). Arithmetic circuits: A survey of recent re-
sults and open questions. Foundations and Trends R© in Theoretical Computer Science,

123

https://doi.org/10.1007/s00037-005-0188-8
https://doi.org/10.1007/s00037-005-0188-8
https://doi.org/10.1007/s00037-008-0254-0
https://doi.org/10.1007/s00037-008-0254-0
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://github.com/dasarpmar/lowerbounds-survey/releases
https://github.com/dasarpmar/lowerbounds-survey/releases
https://doi.org/10.1007/978-3-540-70575-8_6
https://doi.org/10.1007/978-3-540-70575-8_6
https://doi.org/10.1109/FOCS.2010.9
https://doi.org/10.1109/FOCS.2010.9
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/1374376.1374448
https://doi.org/10.1145/1374376.1374448
https://doi.org/10.1007/978-3-642-03685-9_52
https://doi.org/10.1007/978-3-642-03685-9_52
https://doi.org/10.1007/s00037-015-0105-8
https://doi.org/10.1007/s00037-015-0105-8

5(3—4), 207–388. ISSN 1551-305X. URL http://dx.doi.org/10.1561/
0400000039.

68. Srinivasan, S. (2019). Strongly exponential separation between monotone VP and
monotone VNP. CoRR, abs/1903.01630. URL http://arxiv.org/abs/1903.
01630.

69. Tavenas, S. (2015). Improved bounds for reduction to depth 4 and depth 3. Inf. Com-
put., 240, 2–11. URL https://doi.org/10.1016/j.ic.2014.09.004.

70. Valiant, L. G. (1979). The complexity of computing the permanent. Theor. Com-
put. Sci., 8, 189–201. URL https://doi.org/10.1016/0304-3975(79)
90044-6.

71. Valiant, L. G., S. Skyum, S. Berkowitz, and C. Rackoff (1983). Fast parallel compu-
tation of polynomials using few processors. SIAM J. Comput., 12(4), 641–644. URL
https://doi.org/10.1137/0212043.

72. Williams, R. (2009). Finding paths of length k in o*(2k) time. Inf. Process. Lett.,
109(6), 315–318. URL https://doi.org/10.1016/j.ipl.2008.11.004.

73. Yehudayoff, A., Separating monotone VP and VNP. In M. Charikar and E. Co-
hen (eds.), Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. ACM, 2019. URL
https://doi.org/10.1145/3313276.3316311.

74. Zippel, R., Probabilistic algorithms for sparse polynomials. In E. W. Ng (ed.), Symbolic
and Algebraic Computation, EUROSAM ’79, An International Symposiumon Symbolic
and Algebraic Computation, Marseille, France, June 1979, Proceedings, volume 72 of
Lecture Notes in Computer Science. Springer, 1979. URL https://doi.org/10.
1007/3-540-09519-5_73.

124

http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1561/0400000039
http://arxiv.org/abs/1903.01630
http://arxiv.org/abs/1903.01630
https://doi.org/10.1016/j.ic.2014.09.004
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1137/0212043
https://doi.org/10.1016/j.ipl.2008.11.004
https://doi.org/10.1145/3313276.3316311
https://doi.org/10.1007/3-540-09519-5_73
https://doi.org/10.1007/3-540-09519-5_73

LIST OF PAPERS BASED ON THESIS

PUBLICATION IN A REFEREED JOURNAL

1. Purnata Ghosal, B. V. Raghavendra Rao, A note on parameterized polynomial

identity testing using hitting set generators, Information Processing Letters, Vol-

ume 151, 2019.

PUBLICATIONS IN CONFERENCE PROCEEDINGS

1. Purnata Ghosal, B. V. Raghavendra Rao, On Constant Depth Circuits Parameter-

ized by Degree: Identity Testing and Depth Reduction, International Computing

and Combinatorics Conference (COCOON) 2017, Hong Kong, August 3-5, 2017.

2. Purnata Ghosal, B. V. Raghavendra Rao, On Proving Parameterized Size Lower

Bounds for Multilinear Algebraic Models, International Computing and Combi-

natorics Conference (COCOON) 2019, Xian, China, July 29-31, 2019.

MANUSCRIPT UNDER REVIEW

1. Purnata Ghosal, B. V. Raghavendra Rao, On Proving Parameterized Size Lower

Bounds for Multilinear Algebraic Models. Under review with Fundamenta Infor-

matica.

MANUSCRIPT IN PREPARATION

1. Purnata Ghosal, B. V. Raghavendra Rao, Limitations of Sums of Bounded-Read

Formulas.

125

CURRICULUM VITAE

NAME: Purnata Ghosal

DATE OF BIRTH: 2 May,1992

EDUCATIONAL QUALIFICATIONS:

Bachelor of Engineering

Institute: Indian Institute of Engineering Science

and Technology, Shibpur

Major: Computer Science and Technology

Year: 2010-2014

126

DOCTORAL COMMITTEE

CHAIR PERSON: Dr. C. Chandrasekhar

Professor

Department of Computer Science and Engineering

GUIDE: Dr. B. V. Raghavendra Rao

Associate Professor

Department of Computer Science and Engineering

MEMBERS Dr. Jayalal Sarma

Associate Professor

Department of Computer Science and Engineering

Dr. Meghana Nasre

Assistant Professor

Department of Computer Science and Engineering

Dr. Pradeep Sarvepalli

Associate Professor

Department of Electrical Engineering

127

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	INTRODUCTION
	PRELIMINARIES
	Algebraic Computational Models
	Parameterized Complexity Theory: Basic Definitions
	Parameterized Algebraic Complexity
	Lower Bound Techniques and Complexity Measures
	Partial Derivative Matrix of a polynomial
	Dimension of Partial Derivatives

	Some Explicit Polynomials

	ON BOUNDED-READ MODELS OF COMPUTATION
	Introduction
	Chapter Outline
	Lower Bound on Sum of ROABPs computing DMPY polynomial
	Interval Formulas
	Depth Reduction

	Strict-Interval ABPs
	Sum of ROFs
	A Hard Polynomial
	Rank Upper Bound on ROFs

	Conclusion

	PARAMETERIZED DEPTH REDUCTION AND LOWER BOUNDS
	Introduction
	Chapter Outline
	Parameterized Depth Reduction
	Parameterized Lower Bound on Depth-5 Powering Circuits
	Conclusion

	PARAMETERIZED LOWER BOUNDS AGAINST MULTILINEAR ALGEBRAIC CIRCUITS
	Introduction
	Chapter Outline
	Construction of high rank polynomials
	A full rank polynomial
	A high rank sum of three ROFs

	Lower bounds
	ROABP
	Separation Between Read-2 and Read-Once Oblivious ABPs
	Strict interval ABPs
	Rank bound for ROPs by Graph representation

	Conclusion

	ON A GENERATOR BY SHPILKA AND VOLKOVICH
	Introduction
	Chapter Outline
	Properties of the Shpilka Volkovich Generator
	Application of SV-generator: PIT for small multilinear models
	PIT for Occur-once formulas with powering gates
	PIT for Clustered read-2 formulas

	 SV-generator preserves rank
	Conclusion

	CONCLUSIONS AND FUTURE DIRECTIONS
	REFERENCES
	LIST OF PAPERS BASED ON THESIS
	CURRICULUM VITAE
	DOCTORAL COMMITTEE

